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MULTIPLICITIES OF THE EIGENVALUES
OF THE DISCRETE SCHRÖDINGER EQUATION

IN ANY DIMENSION

DAN BURGHELEA AND THOMAS KAPPELER

(Communicated by Walter Littman)

ABSTRACT. The following von Neumann-Wigner type result is proved: The

set of potentials a: T —► R (r Ç ZN), with the property that the corresponding

discrete Schrödinger equation A¿ + a has multiple eigenvalues when considered

with certain boundary conditions, is an algebraic set of codimension> 2 within
Rr.

1. Introduction. The classical theorem of von Neumann and Wigner [10]

shows that, within the space S of real symmetric nxn matrices (n > 2), the ones

with multiple eigenvalue(s) form a real algebraic set of codimension 2. This implies,

in particular, that the set of all real symmetric matrices with simple spectrum is

pathwise connected, locally pathwise connected, and dense in S. Recently, Lax [7]

shows that in a three-dimensional vector space of (n x n) symmetric matrices there

exists at least a one-dimensional subspace of matrices with multiple eigenvalues

( "crossing" of eigenvalues). These results were refined and generalized by Friedland,

Robbin, and Sylvester [2].

In this paper the subset of all real symmetric matrices is considered which come

from the discrete Schrödinger equation A<¡ + a on a given subset T of ZN and

with boundary conditions to be specified later. By showing a certain transversality

condition, an analogous result to the one of von Neumann and Wigner is shown:

We prove that the set QB of all potentials a with the property that Ad -Y a has

multiple eigenvalue (s) when considered with a certain boundary condition is an

algebraic set of codimension > 2.

To be more precise, let N and nx,...,n^ be arbitrary positive numbers which

define a subset T in ZN in the following way:

r :={z = (zx,...,zN):l <zl<ni,l<i< N}.

For an arbitrary function u: ZN —♦ R, let us define the discrete Laplace operator

Ad, conveniently for our purposes, by

Adn(2):=     Yl    UH        (*€Z*)>
|w—»1=1

where | • | denotes the Euclidean distance. Let a: F —► R be an arbitrary func-

tion. Then we consider the following two eigenvalue problems of the Schrödinger

equation.
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1. Dirichlet problem.

(LI) Adu(z) + a{z)u{z) = Xu{z)       (zeT).

(1.2) u(z) =0    for z e ZN\T.

II. Periodic problem.

(11.1) Adu(z) -Y a(z)u(z) = Xu(z)        (z S ZN),

where o is periodically extended from T to the whole of ZN.

(11.2) u(zx, ...,Zj+nj,..., zN) = elK'u(zx,..., Zj,..., zN)

for given real numbers Kj (1 < j < N).

Let us denote by QB the set of all potentials a in Rp such that (A<¡ + a),

considered with the boundary condition B, has at least one multiple eigenvalue,

where P = n»=i ni an^ B is equal to I or II, staying for the different boundary

conditions as given in I and II. For the reader's convenience, let us recall that by an

algebraic set we mean the set of zeros of a finite collection of polynomials in some

Euclidean space. An algebraic (real analytic) variety K in R" is locally the locus

of the zeros of a finite collection of polynomials (real analytic functions).

THEOREM. Qb is an algebraic set of codimension > 2 in Rp. In particular,

KP\QB is connected.

REMARK 1. The continuous analogue of the Theorem above is proved in [4].

REMARK 2. It will follow from the proof of the Theorem that the statement

is true for much more general difference operators than the discrete Schrödinger

operators, and more general boundary conditions than the ones given here. In

particular, the Theorem will hold if we replace the Laplacian Ad by a quite general,

not necessarily elliptic, difference operator of arbitrary order > 2. Evidently the

Theorem does not hold for difference operators of order zero and the Lemma in §2

fails to be true for such operators.

REMARK 3. Related papers are [1-4, 7, 9, 10].

2. Proof of the Theorem. In both cases (B = I or II), we can include the

boundary conditions in the operator Ad+a which can then be represented by PxP

matrices Sx(a) and Su(a), respectively, where the potential a in Rp acts diagonally.

For a in Rp, we define /Ba := det(Sß - Aid) (B =1 or II). fB¡a is a polynomial

in A of degree P with coefficients which are polynomials in a(z) (z € T). Clearly,

SB(a) has a multiple eigenvalue iff fB%a has a multiple root, and this is true iff the

discriminant D(/b,q) of fBA does vanish (cf. e.g. [6, p. 60]). Because T)(fB,a) is

a polynomial in a(z) (z e T), it follows that QB is an algebraic set. To compute

the claimed dimension, let us fix B and introduce the following notation: For a in

Rp given, we denote the eigenvalues of SB(a) in increasing order and with their

multiplicities as follows:

Xx(a) <■■■< XP(a).

By definition, the mth eigenvalue Xm(a) of SB(a) has multiplicity > 2 iff

Xx(a) < ■ ■ ■ < Am_i(a) < Xm(a) = Xm+X(a) < ■■■ .
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We define for m = 1,,

QB(m) := {aeRp:Ai(o) < •■• < Xm(a) = Xm+X(a) <■■■},

TB(m) := {a € Rp: a € QB(m) and Xm(a) = 0}

and

TB :=       M      TB(m)    (disjoint union).

l<m<P-l

Then QB = Ui<m<p-i Qß(m) (disjoint union) and QB(m) = TB(m) x R by the

following map:

TB(m) x R —► QB(m),        (a,c) —* a + el,

where 1 denotes the vector in Rp with all entries equal to 1.

Once we have shown that TB(m) is a real analytic variety, we conclude that also

QB(m) is a real analytic variety and thus

codim <2B = min codim <3ß(m) > min(codimTB(m)) — 1.
m m

It will be shown with the Proposition below that TB is an algebraic set of codimen-

sion > 3. So we can conclude that codimTB(m) > codim Tg > 3. In all, we get

codim Qb > 2. To show that TB(m) is a real analytic variety, let oP be in TB(m).

Following Kato [5], there exists a neighborhood U of a0 in Rp such that for all a

in/7

Xx(a) <■■■ < Xm(a) < Xm+X(a) <■■■ .

Then a potential a in U is an element in TB(m) iff

Ü = 0,1).^-det(5B(a)-AId)U=o=0

This shows that TB(m) is a real analytic variety.    D

Let us recall the definition of the sets TB:

TB := {a e Rp: SB(a) has 0 as a multiple eigenvalue}.

Then for B =1 or II:

PROPOSITION.  TB is an algebraic set of codim > 3 in Rp.

PROOF. We restrict ourselves to prove the Proposition for the case where N — 2,

nx = n2 = n, and B = I. It will follow from the proof that the general case is shown

in the same way. We write T for T\, S for Si, and n2 for P.

S — S (a) then has the form of a block Jacobi matrix:

S(a) =

(Ax     I     0
CA^/
0 \/

I
Vo

■fj\

0
I

~An)
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where / denotes the n x n identity matrix and A¿ are n x n Jacobi matrices (i <

i < n) given by
1    0--0    x

A potential a in R" is in T iff dim Ker S (a) > 2, where Ker S (a) denotes the kernel

of S (a). Now dim Ker S (a) > 2 iff all the (n2 -1 ) x (n2 -1 ) submatrices of S (a) are
2

singular. It follows that T is an algebraic set in R" and can thus be decomposed

in its irreducible components X¿, T = U¿=i li-

lt suffices to show that codimaT¿ > 3 for 1 < i < M and any regular point a

in Ti (cf. e.g. [8, p. 41]). To simplify notation let Tj be Tx. Choose an arbitrary

regular point a0 in Tx. The idea of the proof is to express, in a neighborhood of

o° in Tx, two coefficients out of a¿¿ as functions of the others, and then to show

that there is a third equation among the remaining coefficients which holds on this

neighborhood and which does not hold identically on Rn ~2.

Let us denote by [a, i] the number (a - l)n -Y i (1 < a, i < n). For an arbitrary

n2 x n2 matrix M we denote by M((a,i), (ß,j)) the (n2 — 1) x (n2 - 1) submatrix

of M by eliminating the [a, i]th row and the [/?, j]th column. Moreover, we define

b[a,i} ~a(a,i).

Step 1. Let us define F0(a) := det S(a) and Fk(a) := dFk_x(a)/dbk (1 < k < n2)

as well as Gk(a) := Fk-X(a) — bkFk(a) (1 < k < n2). Clearly Fk(a) and Gk(a) are

independent of bx,..., bk. In particular, we have

Fk_x(a) = bkFk(a) + Gk(a)    and det S(a) = bxFx(a) -Y Gx(a).

Fx(a) vanishes identically on T. Now let us assume that F2(a),... ,Fk(a) are all

vanishing identically in a certain neighborhood of a0 in Tx. Due to the fact that a0

is regular there are two possibilities:

(1) there is a neighborhood of o° in Tx such that F2(a),... ,Fk(a) and Fk+X(a)

do vanish identically; or

(2) there exists a neighborhood of o° in Tx such that Fk+X vanishes at most on

a real analytic variety of codim > codim Tx -Y 1 contained in this neighborhood.

If the second possibility holds then one can solve the equation 0 = bk+xFk+x(a)-Y

Gk+X(a) for bk+x in a neighborhood of A0 in Tx except on a set of points of lower

dimension.

Now

(1 0      ■•■    0\

Fn2 (a) — det
0

0
1

Vo.    o    i)
and thus we conclude that there exists a smallest k, 1 < k < n2, such that bk can

be expressed as a real analytic function of bk+x,..., bni in a neighborhood V of a0

in Tx except on a real analytic variety of lower dimension, contained in V.

Step 2. Let us assume that in Step 1 we could express a(a,i) as a real analytic

function of the remaining coefficients. Then consider 0 = detS((a, i), (a,i)).
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Applying the same procedure for S((a, i), (a,i)) as was applied for S(a) in Step

1, we conclude that there exists a neighborhood V of a0 in Tx and (ß, j) such that

a(ß,j) can be expressed as a function of a(i,k) ^ (a,i) and (7, A;) ̂  (ß,j) except

on a set of lower dimension in V.

Step 3. Now let us assume that there exists a neighborhood V of a0 in Tx and

(a,i),(ß,j) ((a,i) t¿ (ß,j)) such that a(a,i) can be expressed as a real analytic

function of the remaining coefficients of a, and a(ß,j) can be expressed as a real

analytic function of the other coefficients different from a(a,i), except on a set of

points of lower dimension in V. Then let us consider the equation

0 = detS((a,k),(ß,j))

which holds on T. This is a polynomial in 0(7, k) with (7, k) ^ (a,i) and ^ (ß,j).

It thus suffices to show that det S((a, i), (ß,j)) is not identically zero on R™ ~2.

This will be done with the following Lemma.    D

LEMMA.   detS((a,i),(ß,j)) is not identically zero on R" ~2.

PROOF. Clearly det S((a, i), (ß, j)) is a polynomial in 0(7, k). We have to show

that

degdetS((cM),(/?,y))>l.

Without loss of any generality we may and do assume that a < ß and i < j. It

then follows that detS((a,i), (ß,j)) contains the following monomial:

I \   I \   l \
n a(l,k)

l<k<n
\l<-7<a or ß<i<n J

n a(l,k)

a<7</9
\l<fc<n and k^j J

a(a,k)

l<fc<i-l
\j+l<k<n J

and thus the Lemma follows.

REMARK. If y < i, then det S((a,i), (ß,j)) contains the following monomial:

/ \

n a(l,k)
l<k<n

\l<-y<Q or ß<i<n

( \

n a(7,fc)
a<i<0

\l<k<n and k^j

( \

a(a,k)

l<k<j-l
\j+l<k<n J
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