Extensions of certain compact operators on vector-valued continuous functions
HTML articles powered by AMS MathViewer
- by Surjit Singh Khurana
- Proc. Amer. Math. Soc. 102 (1988), 268-270
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920984-7
- PDF | Request permission
Abstract:
For any compact Hausdorff spaces $X,Y$ with $\varphi :\;X \to Y$ a continuous onto mapping, $E,F$, Hausdorff locally convex spaces with $F$ complete, $C(X,E)\;(C(Y,E))$ all $E$-valued continuous functions on $X(Y)$, and $L:C(Y,E) \to F$ a $\mathcal {T}$-compact continuous operator $(\sigma (F,F’) \leq \mathcal {T} \leq \tau (F,F’))$, it is proved there exists a $\mathcal {T}$-compact continuous operator ${L_0}:C(X,E) \to F$ such that ${L_0}(f \circ \varphi ) = L(f)$ for every $f \in C(Y,E)$.References
- Fernando Bombal, On weakly compact operators on spaces of vector valued continuous functions, Proc. Amer. Math. Soc. 97 (1986), no. 1, 93–96. MR 831394, DOI 10.1090/S0002-9939-1986-0831394-3
- Fernando Bombal and Baltasar Rodríguez-Salinas, Some classes of operators on $C(K,E)$. Extension and applications, Arch. Math. (Basel) 47 (1986), no. 1, 55–65. MR 855138, DOI 10.1007/BF01202500
- J. K. Brooks and P. W. Lewis, Linear operators and vector measures, Trans. Amer. Math. Soc. 192 (1974), 139–162. MR 338821, DOI 10.1090/S0002-9947-1974-0338821-5
- L. Drewnowski, Topological rings of sets, continuous set functions, integration. I, II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 269–276; ibid. 20 (1972), 277–286 (English, with Russian summary). MR 306432
- A. Katsaras and D. B. Liu, Integral representations of weakly compact operators, Pacific J. Math. 56 (1975), no. 2, 547–556. MR 374980
- Surjit Singh Khurana, Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195–211. MR 492297, DOI 10.1090/S0002-9947-1978-0492297-X
- Surjit Singh Khurana, Topologies on spaces of vector-valued continuous functions. II, Math. Ann. 234 (1978), no. 2, 159–166. MR 494178, DOI 10.1007/BF01420966
- Surjit Singh Khurana, Extensions of group-valued regular Borel measures, Math. Nachr. 97 (1980), 159–165. MR 600830, DOI 10.1002/mana.19800970113
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
Similar Articles
- Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B38,, 28B05,46G10,47B05
- Retrieve articles in all journals with MSC: 47B38,, 28B05,46G10,47B05
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 268-270
- MSC: Primary 47B38,; Secondary 28B05,46G10,47B05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920984-7
- MathSciNet review: 920984