EXTENSIONS OF CERTAIN COMPACT OPERATORS ON VECTOR-VALUED CONTINUOUS FUNCTIONS

SURJIT SINGH KHURANA

(Communicated by John B. Conway)

ABSTRACT. For any compact Hausdorff spaces X, Y with $\varphi: X \rightarrow Y$ a continuous onto mapping, E, F, Hausdorff locally convex spaces with F complete, $C(X,E)$ ($C(Y,E)$) all E-valued continuous functions on X (Y), and $L: C(Y,E) \rightarrow F$ a T-compact continuous operator ($\sigma(F,F') \leq T \leq \tau(F,F')$), it is proved there exists a T-compact continuous operator $L_0: C(X,E) \rightarrow F$ such that $L_0(f \circ \varphi) = L(f)$ for every $f \in C(Y,E)$.

In this paper X, Y are compact Hausdorff spaces, $\varphi: X \rightarrow Y$ a continuous onto function, E, F Hausdorff locally convex spaces over K, the field of real or complex numbers, and $C(X,E)$ ($C(Y,E)$) all E-valued continuous functions on X (resp. Y). The space $C(Y,E) \circ \varphi$ is a subspace of $C(X,E)$. When E, F are Banach spaces it is proved in [1, 2] that every weakly compact operator $T: C(Y,E) \rightarrow F$ has extension to a weakly compact operator $T_0: C(X,E) \rightarrow F$ in the sense that $T_0(f \circ \varphi) = T(f)$ for every $f \in C(Y,E)$. Here we will prove the result for general locally convex spaces E, F assuming F to be complete, by using the measure extension techniques discussed in [8]. On $C(X,E)$ or $C(Y,E)$, u will denote the uniform topology. For locally convex spaces G_1, G_2, an operator $T: G_1 \rightarrow G_2$ will be called compact if bounded sets of G_1 are mapped into relatively compact subsets of G_2. For locally convex spaces we refer to [9]. $\mathcal{L}(E,F)$ will denote the space of all continuous linear operators from E to F. Let $\{| \cdot |_p: p \in P\}$ be the family of all continuous seminorms on E. $M(X), M(Y)$ will denote all regular scalar Borel measures on X and Y resp. If $T: (C(Y,E), u) \rightarrow F$ is continuous and $f \in F'$, then $f \circ T \in (C(Y,E), u)'$ and so [5, 7] there exists $p \in P$ such that $|f \circ T|_p \in M^+(Y)$ (note for $g \in C(Y), g \geq 0$, $|(f \circ T)|_p(g) = \sup\{|(f \circ T)(h)|: h \in C(Y,E) \text{ and } \|h\|_p \leq f\}$, where $\|h\|_p(y) = \|h(y)\|_p$ [7]). Here $C(Y)$ stands for all K-valued continuous functions on Y. Also $(C(Y,E), u)' = M(Y,E')$ [5, 7]. $\mathcal{B}(X), \mathcal{B}(Y)$ will denote all Borel subsets of X and Y respectively. For an algebra \mathfrak{A} of subsets of a set Z, $S(\mathfrak{A})$ will denote all K-valued \mathfrak{A}-simple functions on Z.

THEOREM. Assume F is a complete locally convex space, and let τ be another locally convex topology on F such that $\sigma(F,F') \leq \tau \leq \tau(F,F')$. Let $L: (C(Y,E), u) \rightarrow F$ be a continuous τ-compact operator, i.e., bounded subsets of $C(Y,E)$ are mapped into relatively τ-compact subsets of F. Then there exists a continuous...
\textbf{\textit{T}-compact operator} \(\mathbf{L}_0: (C(X, E), \mu) \rightarrow F \) such that \(\mathbf{L}_0(f \circ \varphi) = \mathbf{L}(f) \) for each \(f \in C(Y, E) \).

\textbf{Proof.} \(\mathcal{L}(E, F) \) is the space of all continuous linear operators from \(E \) to \(F \). Let \(\mathcal{F} \) be the weak completion of \(F \) and \(G \) the space of all continuous linear operators from \(E \) into \((\mathcal{F}, \sigma(\mathcal{F}, F'))\). For any finite subset \(H \subset F' \) and any bounded \(B \subset E \), a seminorm \(m \) is generated on \(G \):

\[m(Q) = \sup\{|f \circ Q(x)| : x \in B, f \in H\}, \]

\(Q \in G \). Under the locally convex topology generated by these seminorms, \(G \) is a complete locally convex space. The topology on \(\mathcal{L}(E, F) \) is the one induced by \(G \). Since \(L \) is weakly compact, we get \([3, 5]\) a regular Borel measure \(\mu_1: \mathcal{B}(Y) \rightarrow \mathcal{L}(E, F) \) with the properties:

(I) For any \(f \in F' \), \(f \circ \mu_1 = f \circ L \).

(II) For any equicontinuous set \(H \subset F' \), there exists a \(p \in P \) such that

\[\sup \left\{ \left| \sum f(\mu_1(A_i)(x_i)) \right| \right\} < \infty, \]

where the supremum is taken over \(f \in H \), all finite Borel partitions \(\{A_i\} \) of \(Y \), and all \(x_i \in E \) satisfying \(|x_i|_p \leq 1 \).

(III) For any bounded set \(B \subset E \), \(\left\{ \sum \mu_1(A_i)x_i \right\} \), where \(\{A_i\} \) varies over all finite disjoint collections of Borel subsets of \(X \) and \(x_i \in B \), is relatively \(\tau \)-compact in \(F \).

Let \(\{\gamma_s : s \in S\} \) be the family of all continuous seminorms on \(G \). In the notation of \([8, \text{p. 160}]\), let \(\mathcal{U} = \{\varphi^{-1}(A) : A \in \mathcal{B}(Y)\} \); defines \(\mu: \mathcal{U} \rightarrow \mathcal{L}(E, F) \), \(\mu(\varphi^{-1}(A)) = \mu_1(A), A \in \mathcal{B}(Y) \). Each \(s \in S \) gives an exhaustive, order \(\sigma \)-continuous submeasure \(\mu_s: \mathcal{U} \rightarrow [0, \infty) \), \(\mu_s(B) = \sup\{\mu(A)|_{|s} : A \in \mathcal{U}, A \subset B\} \) for every \(B \in \mathcal{U} \). As in the proof of \([8, \text{Theorem 1, pp. 160–162}]\), these submeasures can be extended to exhaustive, order \(\sigma \)-continuous, regular submeasures \(\mu_s: \mathcal{B}(X) \rightarrow [0, \infty) \) with the properties

(i) for any \(s(1), s(2) \in S \), \(\mu_{s(1)} \leq \mu_{s(2)} \) implies \(\mu_{s(1)} = \mu_{s(2)} \),

(ii) for \(\varepsilon > 0, s \in S \) and \(B \in \mathcal{B}(X) \), there exists \(B_0 \in \mathcal{U} \), such that \(\mu_s(B \Delta B_0) < \varepsilon \) (here \(B \Delta B_0 = (B \setminus B_0) \cup (B_0 \setminus B) \)).

On \(\mathcal{B}(X) \) we define \(\mathcal{F}-N \) topology \(\mathcal{T} \) generated by \(\{\mu_s : s \in S\} \) \([4, \text{p. 271}]\). \(\mathcal{B}(X) \) becomes a topological ring in which \(\mathcal{U} \) is dense. This means the uniformly continuous mapping \(\mu: \mathcal{U} \rightarrow G \) can be uniquely extended to a uniformly continuous mapping \(\mu_0: \mathcal{B}(X) \rightarrow G \). This \(\mu \) is countably additive and regular \([8]\).

We shall prove some properties of \(\mu_0 \).

(a) First we prove that (II) holds when \(\{A_i\} \) are chosen from \(\mathcal{B}(X) \). Take any equicontinuous \(H \subset F' \). By (II) above there exists a \(p \in P \) and \(M, 0 < M < \infty \), such that \(\sup\{\sum f(\mu(A_i)(x_i)) : x_i \} \) a finite subset of \(E \) with \(p(x_i) \leq 1 \), and \(\{A_i\} \) a disjoint collection in \(\mathcal{U} \) \(\leq M \), for each \(f \in H \). Fix a finite subset \(\{x_i : 1 \leq i \leq n\} \) in \(E \) with \(p(x_i) \leq 1 \) for each \(i \), and a finite disjoint collection \(\{B_i\} \) in \(\mathcal{B}(X) \). Take nets in \(\mathcal{U} \), \(A^t_{\alpha} \rightarrow B_i \) in \(\mathcal{B}(X, \mathcal{T}) \). Put \(C^t_{\alpha} = A^t_{\alpha} \cup \bigcup_{i=1}^{t-1} A^t_{\alpha}, i \geq 2. \) Then \(\{C^t_{\alpha} : 1 \leq i \leq n\} \) are mutually disjoint and \(C^t_{\alpha} \rightarrow B_i \). From \(\sup\{\sum f(\mu(C^t_{\alpha})(x_i)) : f \in H, \{x_i\} \subset E \) with \(p(x_i) \leq 1 \} \leq M \), we get

\[\sup \left\{ \left| \sum f(\mu_0(B_i)(x_i)) \right| : f \in H, \{x_i\} \subset E \right\} \leq M \]

for \(p(x_i) \leq 1 \) and \(\{B_i\} \) a disjoint finite collection in \(\mathcal{B}(X) \).
Now we claim that $\mu_0(B) \in \mathcal{L}(E, F)$ for every $B \in \mathcal{B}(X)$. Take a net $\{A_\alpha\}$ in \mathcal{U} such that $A_\alpha \rightarrow B$ in $(\mathcal{B}(X), \mathcal{T})$. Fix $x \in E$. Since $\{\mu(A_\alpha)(x)\}_\alpha$ is a relatively \mathcal{T}-compact set we get $\mu_0(A)(x) \in F$. Using what is proved first in (a) we get $\mu_0(B) \in \mathcal{L}(E, F)$.

(b) Proceeding as in (a) we prove that (III) holds when $\{A_i\}$ are chosen from $\mathcal{B}(X)$.

Because of properties (a) and (u), the mapping $\mu_0: \mathcal{B}(X) \rightarrow \mathcal{L}(E, F)$ gives a \mathcal{T}-compact linear continuous mapping $L_1: (S(\mathcal{B}(X)) \otimes E, u) \rightarrow F$. The completion of $(S(\mathcal{B}(X)) \otimes E, u)$ contains $C(X) \otimes E$ and therefore also contains $C(X, E)$ (note $C(X) \otimes E$ is dense in $(C(X, E), u)$). Thus we get a continuous \mathcal{T}-compact operator $L_0: C(X, E) \rightarrow F$ (note F is complete). For an $f \in C(Y)$, $x \in E$, and $g \in F'$, $g \circ L(f \otimes x) = g \circ \mu_1(f \otimes x)$. Take a sequence $\{f_n\}$ in $S(\mathcal{B}(Y))$, such that $f_n \rightarrow f$ uniformly on Y. Thus $\{f_n \circ \varphi\} \subset S(\mathcal{U})$ and $f_n \circ \varphi \rightarrow f \circ \varphi$ uniformly on X. This means

$$g \circ L_0(f \circ \varphi \otimes x) = \lim g \circ L_1(f_n \circ \varphi \otimes x) = \lim g \circ \mu_1(f_n \otimes x) = g \circ \mu_1(f \otimes x) = g \circ L(f \otimes x).$$

Thus $L_0(f \circ \varphi) = L(f)$. Since $C(Y) \otimes E$ is dense in $(C(Y, E), u)$ we get $L_0(f \circ \varphi) = L(f)$ for every $f \in C(Y, E)$. This proves the theorem.

I am thankful to the referee for some useful suggestions.

REFERENCES