A counterexample to the nodal domain conjecture and a related semilinear equation
HTML articles powered by AMS MathViewer
- by Chang Shou Lin and Wei-Ming Ni
- Proc. Amer. Math. Soc. 102 (1988), 271-277
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920985-9
- PDF | Request permission
Abstract:
In this paper we first establish a nonuniqueness result for a semilinear Dirichlet problem of which the nonlinearity is of super-critical growth. We then apply this result to construct a Schrödinger operator on a domain $\Omega$ such that the second eigenfunctions of this operator (with zero Dirichlet boundary data) have their nodal sets completely contained in the interior of the domain $\Omega$.References
- Shiu Yuen Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), no. 1, 43–55. MR 397805, DOI 10.1007/BF02568142
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879 -S. Lin, On second eigenfunctions of the Laplacian in ${{\mathbf {R}}^2}$, preprint.
- Wei-Ming Ni and Roger D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$, Comm. Pure Appl. Math. 38 (1985), no. 1, 67–108. MR 768105, DOI 10.1002/cpa.3160380105 -M. Ni and J. Serrin, Existence and non-existence theorems for ground states for quasilinear partial differential equations. The analomous case, Proc. Accad. Naz. Lincei 77 (1986), 231-257.
- Lawrence E. Payne, On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys. 24 (1973), 721–729 (English, with German summary). MR 333487, DOI 10.1007/BF01597076
- Shing Tung Yau, Problem section, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 669–706. MR 645762
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 271-277
- MSC: Primary 35B05,; Secondary 35J60
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920985-9
- MathSciNet review: 920985