
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 102, Number 2, February  1988

A COUNTEREXAMPLE
TO THE NODAL DOMAIN CONJECTURE

AND A RELATED SEMILINEAR EQUATION

CHANG-SHOU LIN AND WEI-MING NI

(Communicated by Walter Littman)

ABSTRACT. In this paper we first establish a nonuniqueness result for a semi-

linear Dirichlet problem of which the nonlinearity is of super-critical growth.

We then apply this result to construct a Schrödinger operator on a domain

O such that the second eigenfunctions of this operator (with zero Dirichlet

boundary data) have their nodal sets completely contained in the interior of

the domain f2.

1. Introduction. In this paper we shall consider the eigenvalue problem

( (A + V)<p + Xp = 0    inn,

\ ip = 0 on du,

where A = X)"=i(d2'/'^xi) 1S ̂ e Laplace operator, V is a given smooth function

(the "potential"), A is an eigenvalue and 12 is a bounded smooth domain in R",

n > 2. The set {x e 12 | <p(x) = 0} is called the nodal set of <p. It is well known that

the first eigenfunction is always positive in 12 while all the higher eigenfunctions

must change sign. The only general theorem concerning higher eigenfunctions seems

to be the Courant Nodal Domain Theorem [2] which asserts that the nodal set of

a kth eigenfunction divides the domain 12 into at most k subregions. In general the

topology of nodal domains is not known, even in the simplest case n — 2, k = 2

and V = 0. In case Q Ç R2 is convex and V = 0 in 12, the following conjecture has

been around for quite some time (see e.g. [8]).

NODAL DOMAIN CONJECTURE. The nodal line of any second eigenfunction

must intersect the boundary ¿912 at exactly two points.

Progress has been made by L. Payne in [7] where this conjecture is verified under

the additional hypothesis that the domain 12 is symmetric with respect to a line.

Recently, in [4], the first author has established this conjecture for bounded convex

domains 12 which are symmetric with respect to a point or are invariant under a

rotation of a fixed (but arbitrary) angle.

The purpose of this paper is to show that the above conjecture is false when

V ^ 0. In fact, we shall construct, for each dimension n > 2, a potential V which

is radially symmetric while the domain 12 is a ball and yet a second eigenfunction

p2 of (1.1) is also radially symmetric. This, in turn, implies that the nodal set of

<p2 is a sphere and thus encloses a smaller ball in fi.
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To achieve this purpose, in case n > 3, we shall study the semilinear elliptic

equation

(1.2) Au + up -Y uq = 0,

where

„ „, q+1 n + 2 n + 6
(1.3) p=—    and    —2<<!<—2-

We first show that equation (1.2) possesses a positive entire radial solution in R".

It then follows that there exists R* > 0 such that for every R > R», equation (1.2)

has at least two positive radial solutions in Br (i.e. the ball with radius R) with

zero Dirichlet boundary data. The existence of positive entire solutions and the

nonuniqueness property of equation (1.2) also seem to be new in Rn, n > 3, and

are of independent interest. A similar nonuniqueness result in R2 was found earlier

by Ni and Nussbaum [5]. Using these results, we are then able to construct (in §3

below) the radial potential V described above.

ACKNOWLEDGMENT. This paper was completed while both authors were vis-

iting the Centre for Mathematical Analysis, Australian National University. The

authors wish to thank the Centre for the invitation and the hospitality during their

stay in Canberra.

2. A semilinear equation. In this section we shall study positive radial solu-

tions of the semilinear equation

(2.1) Alt + f(u) = 0

in Rn as well as in Br (ball of radius R) Ç Rn, n > 3, where

Í uP-Yu",        u>0,

v  '      1 0, u < 0,

with

(2.2) Kp<(n-Y2)/(n-2)<q.

Since we are only interested in radial solutions, equation (2.1) reduces to an

ordinary differential equation. We consider the corresponding initial-value problem

Urr + {n— l)ur/r -Y fiu) = 0,

(2.3) «   u(0) = a > 0,

.   «r(0)=0,

and denote the solution by u = u(r; a).

PROPOSITION 2.4. There exists a 6 > 0 such that for alla e (0,f5) the solution

u(r; a) must vanish for some finite r.

PROOF. For each a > 0, set w(x) = uir;a)/a, s = a(p_1)/2r and e = aq~p.

Then w satisfies

(2.5)

wss + {n- l)w3/s -Y f(w, e) = 0,

w(0) = 1,

{ t«a(0)=0,
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where
f wp -Y ewq    if w > 0,

f(w,s) = <
( 0, if w < 0.

Observe that equation (2.5) makes sense for all £ e R. For each e e R, we denote

the solution w of (2.5) by u>(s,e). It is well known that tü(s, 0) has exactly one

zero and tu(s, 0) remains negative after its zero since, by the maximum principle,

w{s,s) is always decreasing for every e > 0. Now the continuous dependence of

w{s,e) on e implies that there exists an £q > 0 such that wis,£) has a zero for

every 0 < e < £o- (Note that since w(s,e) is decreasing for all £ > 0, the term

£Wq is bounded by £wQi0) = £ when u>is) is positive.) Set 6 = £0 , the result

follows.    Q.E.D.

In the rest of this paper, we shall denote the first zero u{r; a) by p(a) with the

convention that p(a) = oo if w(r; a) is a positive entire solution. Again, note that

u{r; a) is always decreasing and has at most one zero.

Proposition 2.6. p(a) -* +oo as a->0.

PROOF. Multiplying (2.1) by it and integrating over Bp(a), we obtain

f       \Du\2dx= Í      iup+1+uq+1)
¿Epic.) •'Sp(a)

< (a"-1 + a"'1) f       u2

since u{r; a)  < u(0; a) = a.   By Poincaré's inequality, there exists a constant

Co > 0, independent of a, such that

: Í      \Du\2Cp       f 2
P2(°)JbpMU

Therefore,

2/   \ ^           ^o
P (a) ¿L -i-r

and our conclusion follows.    Q.E.D.

We now exhibit entire solutions of (2.1).   Let p = (cj + l)/2.   Condition (2.2)

implies that

,__. n + 2 n + 6
(2-7) z—^<Q<z—Ô-

Set

where

,    /       p2       \ 2/(9-1)

12/(*-l) ._0   / n + 2X    /     O     Ni/2n-2    /       n + 2\r/w"AJ n - 2 f

2(g+l)V     n-2/J ' 9-1 V     n-2j\q + l

Straightforward computation leads to the following proposition.
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PROPOSITION 2.8.   ü is a positive radial entire solution o/(2.1).

Now set A = {a > 0 | pia) < co}. It is clear that A is an open set. By

Propositions 2.4 and 2.8, we see that there exists an interval (0,/3) Ç A with

ß £ A. By Proposition 2.6 and the continuous dependence on initial values, we

have

(2.9) limp(a) = oo = limp(a).

Letting R» = inf{p(a)| a e (0, /?)}, we see that there exists ana, e (0,/?) such

that p(a») =s /?». Moreover, (2.9) also gives the following

THEOREM 2.10. Suppose that (2.7) holds. Then for every R> R, the Dirichlet

problem
( Au + u(«+1)/2 + u" = 0,      inBR,

\ u = 0, on BBr,

possesses at least two positive radial solutions.

3. A counterexample. The main goal of this section is to construct a potential

V for which the Nodal Domain Conjecture (stated in §1) is false. In particular, the

nodal set of a second eigenfunction of A + V (of (1.1)) does not intersect the

boundary 512 and it encloses a region inside 12.

We start with a general observation. Let u be a positive solution of

(Au + g{u)=0,    inBp,

\ u = 0, on dBp,

where g is a C1-function, and let <p be an eigenfunction of the linearized equation

at u; i.e.

(3.2)
Aip-Y g'iu)¡p-Y Xip = 0,    in Bp,( A^ +

on dBp.

PROPOSITION 3.3.   If X < 0, then ip must be radially symmetric.

PROOF. Let 0 = px < (n — 1) = p2 < pz < ■ • ■ be the eigenvalues of the Lapla-

cian on the standard unit sphere 5n_1, and ek{8), 6 e Sn~x, be the corresponding

eigenfunctions, k — 1,2,_Suppose that <p satisfies equation (3.2). Set

<pk(r)= [      <p(r,6)ek($)d0.
JS"-!

For k > 2, <pici0) — <pk(p) — 0 and <pk satisfies

<Pk + Xpk = 0.(3-4) ipl + ̂ ip'.+ lg'Wr))-^

We claim that ipk = Q for all k > 2. Suppose on the contrary that ipk ^ 0. Let po

be the first positive zero of tpk; then we may assume without loss of generality that

<Pk > 0 in (0, po)- Since u is radial and decreasing in Bp [3], differentiating (3.1)

with respect to r gives

M Í («')" + ̂ («0 + (?(u(r)) - ^r) «' = o,

1 u'(0) = 0,    u' <0 in (0,po]-
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Multiplying (3.4) by rn 1u' and integrating the resulting equation from 0 to po, we

obtain, from (3.5) that

^(poKtPoK"1 + I"0 {n ~ l\ ~ -Vku'r"-1 dr = -X [" ^«'r""1 dr.
Jo r Jo

Since <p'fc(Po) < 0, (n — 1) < pk, the left-hand side is positive. Thus A must be

positive, a contradiction. Hence ¡pk = 0 for all k > 2 and therefore tp is radially

symmetric.    Q.E.D.

We now come to the main result of this section.

THEOREM 3.6. There exists a radially symmetric potential V and a ball Br,

such that all the second eigenfunctions of A+V in Br, with zero Dirichlet boundary

data are radially symmetric.

REMARKS, (i) The theorem above implies that the Nodal Domain Conjecture

is false for A + V in general.

(ii) In the theorem above, there is only one second eigenfunction since all second

eigenfunctions are radial.

PROOF OF THEOREM 3.6. First, we prove the case n > 3. We shall use the

same notations as in §2. Let u — u{r; a) be the solution of (2.3) with exponents

p,q satisfying (1.3). Since u(p(a);a) = 0 for all a in (0,ß) and p(a) assumes its

minimum i?* (for a e (0,/?)) at a», we have

du .  .    .      . du .dp,    .
— (p(a.);a.) = __(p(a,);û!.)_(a,) = 0.

Set u«(r) = ti(r;a»), <p(r) = duir;a*)/da. Then <p satisfies

A<p+ipul~l -Yqul~1)ip = 0,    mBR„

<p = 0, on d.Bfi..{

We claim that 0 is not the first eigenvalue of the potential pup   x -I- qui      in Br, .

For, otherwise, we have <p > 0 in Br, . Thus

0= /"      u,[A<p+(pup-1+quq-l)ip]dx
Jbr,

—  /       ip[Au» -Y pup -Y qui] dx
JeBr.

=  [      ip[(p-l)up + (q-l)uq]dx,
JBr,

but the last integral is positive, a contradiction. Setting

(3.7) V(r)=pup-1(r)+quq-i(r)

in Br, , we see that the above assertion implies that the second eigenvalue of the

potential V in (3.7), X2(V), must be less than or equal to zero. By Proposition 3.3,

all the corresponding second eigenfunctions must be radial (thus there is one such

eigenfunction), and V, defined by (3.7), is the desired potential.
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For the case n = 2, we need a similar nonuniqueness result from [5]. In [5,

Theorem 4.23, p. 91], Ni and Nussbaum constructed a function /(u) satisfying

(i)  /(0) = /'(0) = 0, f(u) > 0 for u > 0,

(ii)  / is smooth and convex,

(iii)  the Dirichlet problem

Au + /(u)=0,    inS;,,

u = 0, on dBb,

possesses at least two positive radial solutions for some b > 0. Suppose that these

two positive solutions are u{r;ax) and uir;a2), a2 > ax. It is well known that

when n = 2, u{r; a) must have a finite zero for any a > 0 since /(u) > 0 for u > 0

(see e.g. Theorem 2.0 in [6]). Since piax) = pia2) = b (recall that p(a) is the first

zero of u{r;a)), there exists a critical point a» € iax,a2) such that p'(c*,) = 0. As

before, set R» = p(a*), u» = u(r;a*) and p(r) = du(r;a*)/da, ¡p(r) then satisfies

f A<p + f'iu)p = 0,    in BR,,

\ <p = 0, on dBR,.

By (i), (ii) and the above arguments for the case n > 3 it is easy to see that the

second eigenvalue of the Schrödinger operator A + /'(u*) is less than or equal to

zero. We now conclude as in the previous case that K(r) = /'(u*(r)) is the desired

potential.    Q.E.D.
As a consequence of the above theorem, we have

THEOREM 3.8. There exists a radially symmetric potential V and a ball Br,

such that the multiplicity of the second eigenvalue of A -Y V in Br, with zero

Dirichlet boundary data is n+1, and one of the corresponding second eigenfunctions

is radially symmetric.

PROOF. Let V and BR, be given by Theorem 3.6. Consider {tV \ 0 < t < 1}.

Let X2it) be the second eigenvalue of A + tV in (1.1); then X2it) is continuous in t

(see [2]). Note that A2(0) has multiplicity n and A2(l) has multiplicity 1 with the

corresponding eigenfunction being radial. Now let

¿o = inf{i > 0 | at least one of the second eigenfunctions

corresponding to X2it) is radial}.

We assert that A2(<o) has multiplicity n+1; in fact, we claim that A2(io) has one

radial eigenfunction and n nonradial eigenfunctions.

By the definition of to, there exists a sequence Si > s2 > ■ ■ ■ with Sj —► to and

for each Sj, there exists a radial second eigenfunction <pj with ||£>j||l2 = 1. From

standard elliptic estimates it follows that (passing to a subsequence if necessary)

tpj converges (in C2(Br.)) to a nonzero radial function <po- Since A2(sj) —► A2(io)>

<Po is a radial second eigenfunction of A2(io)- Thus to is assumed and is there-

fore positive. It remains to show that there are n nonradial second eigenfunctions

corresponding to A2(*o)- To achieve this, we need the following

LEMMA 3.9.   Ifipisa nonradial second eigenfunction of

(A + W)xp + Xrp = 0,    inBx,

%l¡ = 0, on dBx,

\
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where the potential W is a smooth radial function, then ip must take the form iup

to a rotation) <pir)xi/r for some 1 < i < n, where <p satisfies

(3.10) tp" -Y ̂V +(w- ^=-i) tp + Xp = 0

for r e (0,1) with <p{0) = 0 = <p(l) and tp > 0 in (0,1).

Coming back to the proof of the theorem, we recall that t0 > 0. Thus there is a

sequence tx < t2 < ■ ■ ■ with t3 —♦ to as j —► oo such that for each tj, there are n

nonradial second eigenfunctions of the form <pj(r)xi/r, i = 1,..., n, corresponding

to X2(tj) by Lemma 3.9 above. Then, standard arguments as before show that

tpj(r)xi/r —► tp(r)xi/r where tp satisfies (3.10) with W replaced by toV and A

replaced by A2(io)i i-e- there are n nonradial eigenfunctions corresponding to A2(£o)-

Setting V = toV, we see that V is the desired potential.

It remains to prove Lemma 3.9. When the potential W is identically zero, Lemma

3.9 is well known. The arguments used in proving Lemma 3.9 in this special case

carry over to the general case. Thus the proof is omitted.      Q.E.D.

REMARK. It is easy to prove that for any smooth function V, the multiplicity

of the second eigenvalue of A + V in a bounded smooth domain 12 in R2 with zero

Dirichlet boundary data is at most three (see e.g. the arguments in [1]). Hence

Theorem 3.8 shows that this is in general best possible.

NOTE ADDED IN PROOF. It is also possible to construct a potential V which

is a modification of a/|x|2, 0 < a < 1, such that the nodal domain conjecture for

(1.1) does not hold. We wish to thank E. N. Dancer for pointing this out to us.
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