Weighted norm inequalities for multipliers
HTML articles powered by AMS MathViewer
- by Cristian E. Gutiérrez
- Proc. Amer. Math. Soc. 102 (1988), 290-294
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920988-4
- PDF | Request permission
Abstract:
We consider the two-weight function problem for a class of multiplier operators that include the Riesz and Bessel potentials.References
- Ernst Adams, On the identification of weighted Hardy spaces, Indiana Univ. Math. J. 32 (1983), no. 4, 477–489. MR 703279, DOI 10.1512/iumj.1983.32.32034
- Bui Huy Qui, On Besov, Hardy and Triebel spaces for $0<p\leq 1$, Ark. Mat. 21 (1983), no. 2, 169–184. MR 727341, DOI 10.1007/BF02384307 S. Chanillo and R. L. Wheeden, ${L^p}$ estimates for fractional integrals and Sobolev inequalities, with applications to Schrödinger operators, preprint.
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- Angel E. Gatto, Cristian E. Gutiérrez, and Richard L. Wheeden, Fractional integrals on weighted $H^p$ spaces, Trans. Amer. Math. Soc. 289 (1985), no. 2, 575–589. MR 784004, DOI 10.1090/S0002-9947-1985-0784004-1
- R. Johnson, Application of Carleson measures to partial differential equations and Fourier multiplier problems, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 16–72. MR 729345, DOI 10.1007/BFb0069150
- R. Kerman and E. Sawyer, Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transforms, and Carleson measures, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 112–116. MR 766965, DOI 10.1090/S0273-0979-1985-15306-6 J.-O. Strömberg and A. Torchinsky, Weighted Hardy spaces (to appear).
Similar Articles
- Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B15,, 42B25,42B30
- Retrieve articles in all journals with MSC: 42B15,, 42B25,42B30
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 290-294
- MSC: Primary 42B15,; Secondary 42B25,42B30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920988-4
- MathSciNet review: 920988