A characterization of $L^p$-improving measures
HTML articles powered by AMS MathViewer
- by Kathryn E. Hare
- Proc. Amer. Math. Soc. 102 (1988), 295-299
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920989-6
- PDF | Request permission
Abstract:
A Borel measure $\mu$ on a compact abelian group $G$ is ${L^p}$-improving if $\mu$ convolves ${L^p}(G)$ to ${L^{p + \varepsilon }}(G)$ for some $\varepsilon > 0$. We characterize ${L^p}$-improving measures by means of their Fourier transforms.References
- William Beckner, Svante Janson, and David Jerison, Convolution inequalities on the circle, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp.ย 32โ43. MR 730056
- Aline Bonami, รtude des coefficients de Fourier des fonctions de $L^{p}(G)$, Ann. Inst. Fourier (Grenoble) 20 (1970), no.ย fasc. 2, 335โ402 (1971) (French, with English summary). MR 283496, DOI 10.5802/aif.357
- Michael Christ, A convolution inequality concerning Cantor-Lebesgue measures, Rev. Mat. Iberoamericana 1 (1985), no.ย 4, 79โ83. MR 850410, DOI 10.4171/RMI/19
- Jorge M. Lรณpez and Kenneth A. Ross, Sidon sets, Lecture Notes in Pure and Applied Mathematics, Vol. 13, Marcel Dekker, Inc., New York, 1975. MR 0440298
- Daniel M. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 47 (1982), no.ย 1, 113โ117. MR 679392, DOI 10.4064/cm-47-1-113-117
- David L. Ritter, Most Riesz product measures are $L^p$-improving, Proc. Amer. Math. Soc. 97 (1986), no.ย 2, 291โ295. MR 835883, DOI 10.1090/S0002-9939-1986-0835883-7
- Haskell P. Rosenthal, On subspaces of $L^{p}$, Ann. of Math. (2) 97 (1973), 344โ373. MR 312222, DOI 10.2307/1970850 โ, Convolution by a biased coin, vol. II, Altgeld Book, Univ. of Illinois, 1975, pp. 1-17.
- Walter Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203โ227. MR 0116177, DOI 10.1512/iumj.1960.9.59013
- Elias M. Stein, Harmonic analysis on $R^{n}$, Studies in harmonic analysis (Proc. Conf., DePaul Univ., Chicago, Ill., 1974) MAA Stud. Math., Vol. 13, Math. Assoc. Amer., Washington, D.C., 1976, pp.ย 97โ135. MR 0461002
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Similar Articles
- Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A22,, 42A45,42A85
- Retrieve articles in all journals with MSC: 43A22,, 42A45,42A85
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 295-299
- MSC: Primary 43A22,; Secondary 42A45,42A85
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920989-6
- MathSciNet review: 920989