A CHARACTERIZATION OF L^p-IMPROVING MEASURES

KATHRYN E. HARE

(Communicated by Richard R. Goldberg)

ABSTRACT. A Borel measure μ on a compact abelian group G is L^p-improving if μ convolves $L^p(G)$ to $L^{p+\varepsilon}(G)$ for some $\varepsilon > 0$. We characterize L^p-improving measures by means of their Fourier transforms.

Introduction. Let G be a compact abelian group, Γ its discrete dual group, and m normalized Haar measure on G. A Borel measure μ is said to be L^p-improving for some p, $1 < p < \infty$, if there are constants $\varepsilon > 0$ and K so that whenever $f \in L^p(G)$, $\|\mu * f\|_{p+\varepsilon} \leq K\|f\|_p$. Since $\mu * L^1 \subseteq L^1$ and $\mu * L^\infty \subseteq L^\infty$, an application of the complex interpolation theorem shows that if μ is L^p-improving for some p, then μ is L^p-improving for all $1 < p < \infty$.

Stein in [10, pp. 122-123] posed the problem of characterizing L^p-improving measures by the "size" of the measure μ. We provide such a characterization in terms of the size of the sets

$E(\varepsilon) \equiv \{\gamma \in \Gamma: |\hat{\mu}(\gamma)| \geq \varepsilon\}$

for $\varepsilon > 0$.

To make clear our notion of "size," we recall the following definition of $\Lambda(p)$ set, which was introduced by Rudin in [9] for subsets of \mathbb{Z}.

For $E \subseteq \Gamma$, $\text{Trig}_E(G)$ will denote the set of E-polynomials, i.e., the set of integrable functions $f: G \to \mathbb{C}$ with $\text{supp}(f)$ a finite subset of E. Let $2 < p < \infty$. A subset E of Γ is called a $\Lambda(p)$ set if there is a constant c so that whenever $f \in \text{Trig}_E(G)$, $\|f\|_p \leq c\|f\|_2$. The least such constant c is called the $\Lambda(p)$ constant for E and is denoted by $\Lambda(p, E)$. For standard results on $\Lambda(p)$ sets we refer the reader to [9, 4].

We will show that a measure μ is L^p-improving if and only if the sets $E(\varepsilon)$, with $\varepsilon > 0$, are $\Lambda(p)$ for all $2 < p < \infty$, with certain $\Lambda(p)$ constants.

An example of an L^p-improving measure on the circle is the Riesz product $\mu = \prod_{k=1}^\infty (1 + (e^{3^k t} + e^{-3^k t}/2))$ [2]. It is easy to see that $\{n: |\hat{\mu}(n)| = 1/2^m\}$ is precisely

$E_m = \left\{ \sum_{i=1}^m \varepsilon_i 3^{j_i}: \varepsilon_i = \pm 1, j_i \in \mathbb{Z}^+ \text{ and } j_i \neq j_k \text{ if } i \neq k \right\}$.

Bonami [2] proved that such sets were $\Lambda(p)$ for all $p > 2$, with $\Lambda(p, E_m) \leq A^m p^{m/2}$. Here A does not depend on p or m. This example was the motivation for our characterization of L^p-improving measures.

Received by the editors November 2, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 43A05; Secondary 43A25, 43A46.

Key words and phrases. L^p-improving measure, $\Lambda(p)$ set.

©1988 American Mathematical Society

0002-9939/88 $1.00 + .25 per page
Other examples of L^p-improving measures include any $L^q(G)$ function for $q > 1$ (this follows from Young's inequality), any measure μ on the circle group satisfying $|\hat{\mu}(n)| = O(n^{-\alpha})$ for $\alpha > 0$ [11, p. 127], and Cantor-Lebesgue measures associated with Cantor sets having constant ratio of dissection [3] (see also [1, 5]). Building on the work of [2], Ritter [6] characterized all L^p-improving Riesz products by means of their Fourier transforms, and in particular showed that all Riesz products on the circle are L^p-improving. We will use some of the methods of [2 and 6] in proving our theorem.

Main result.

Let μ be a Borel measure on G with $\|\mu\| \leq 1$. The following are equivalent.

1. μ is L^p-improving.
2. There are constants $p > 2$ and $\alpha > 1$ so that for every $\varepsilon > 0$, $E(\varepsilon)$ is a $\Lambda(p)$ set with $\Lambda(p, E(\varepsilon)) = O(\varepsilon^{-\alpha})$.
3. Each of the sets $E(\varepsilon)$, $\varepsilon > 0$, is a $\Lambda(q)$ set for all $2 < q < \infty$, and there is a constant c such that $\Lambda(q, E(\varepsilon)) = O(q^{-c \log \varepsilon / \varepsilon})$.

Proof. (1) \Rightarrow (2) Since μ is L^p-improving, we may assume there are constants $p > 2$ and K so that $\|\mu * f\|_p \leq K\|f\|_2$ whenever $f \in L^2(G)$.

Let $\varepsilon > 0$. For f an $E(\varepsilon)$-polynomial, define g by
\[
g(\gamma) = \begin{cases} \hat{f}(\gamma) / \hat{\mu}(\gamma) & \text{for } \gamma \in E(\varepsilon), \\ 0 & \text{otherwise.} \end{cases}
\]

Then $\mu * g = f$ and $\|g\|_2 \leq \|f\|_2 / \varepsilon$. Hence
\[
\|f\|_p = \|\mu * g\|_p \leq K\|g\|_2 \leq K\|f\|_2 / \varepsilon.
\]

Thus $E(\varepsilon)$ is a $\Lambda(p)$ set with $\Lambda(p, E(\varepsilon)) \leq K / \varepsilon$.

(2) \Rightarrow (1) For $j \geq 1$ let $E_j = \{\gamma : 1 / 2^j < |\hat{\mu}(\gamma)| \leq 1 / 2^{j-1}\}$. Certainly $\text{supp} \hat{\mu} \subseteq \bigcup_{j=1}^\infty E_j$, and by (2) there is a constant K so that each set E_j is a $\Lambda(p)$ set with $\Lambda(p, E_j) \leq 2^{j\alpha} K$. A standard duality argument shows that if $1/p + 1/p' = 1$ and $f \in L^2(G)$ then
\[
\sum_{\gamma \in E_j} |\hat{f}(\gamma)|^2 \leq (2^{j\alpha} K)^2 \|f\|_{p'}^2.
\]

Let μ^N denote the Nth convolution power of μ. Clearly $|\hat{\mu}^N(\gamma)| \leq 2^{-(j-1)N}$ on E_j. Thus for $f \in L^2(G)$ we have
\[
\|\mu^N * f\|_2^2 = \sum_{j=1}^\infty \sum_{\gamma \in E_j} |\hat{\mu}^N(\gamma)|^2 |\hat{f}(\gamma)|^2 \leq \sum_{j=1}^\infty \frac{1}{2^{2N(j-1)}} (2^{j\alpha} K)^2 \|f\|_{p'}^2 \leq C\|f\|_{p'}^2,
\]

provided N is sufficiently large. It follows that μ^N is L^p-improving for sufficiently large N. As Ritter [6] has proven that μ is L^p-improving if and only if μ^N is L^p-improving, this concludes the proof of (2) \Rightarrow (1).

(3) \Rightarrow (2) is clear.

Before proving (1) \Rightarrow (3), we prove a lemma of independent interest.
Lemma. Suppose \(\|\mu\| \leq 1 \), and for some \(p > 2 \) and constant \(K \), \(\|\mu * f\|_p \leq K\|f\|_2 \) for all \(f \in L^2(G) \). Let \(p(n) = p^{n+1}/2^n \) and \(s(n) = \sum_{j=0}^{n}(2/p)^j \). Then whenever \(f \in L^2(G) \),

\[
(*)_{n} \quad \|\mu^{n+1} * f\|_{p(n)} \leq K^{s(n)}\|f\|_2.
\]

Proof. We proceed inductively. Certainly \((*)_0 \) holds, so assume \((*)_{n-1} \) is satisfied. Let \(t(n) = (2/p)^n \). Since the norm of \(\mu \) as a convolution map from \(L^2 \) to \(L^p \) is at most \(K \), and the norm of \(\mu \) from \(L^\infty \) to \(L^\infty \) is at most \(\|\mu\| \leq 1 \), the complex interpolation method shows that for each integer \(n \geq 0 \),

\[
\|\mu * f\|_{p(n)} \leq K^{s(n)}\|f\|_{p(n-1)}
\]

for \(f \in L^p(n-1)(G) \).

By the induction assumption, \(\mu^n * f \in L^p(n-1)(G) \) whenever \(f \in L^2(G) \); thus

\[
\|\mu^{n+1} * f\|_{p(n)} \leq K^{s(n)}\|\mu^n * f\|_{p(n-1)} \leq K^{s(n)}\|f\|_2.
\]

Proof of Theorem (ctd.). \((1) \Rightarrow (3) \) We will continue to use the functions \(p(n) \) and \(s(n) \) as defined in the previous lemma.

Given \(q, 2 < q < \infty \), choose an integer \(n \geq 0 \) so that \(p(n-1) < q < p(n) \).

Observe that \(E(\varepsilon) = \{\gamma: |\hat{\mu}^{n+1}(\gamma)| \geq \varepsilon^{n+1}\} \); thus the proof of \((1) \Rightarrow (2) \), together with the lemma, shows that for \(\varepsilon > 0 \), \(\Lambda(p(n), E(\varepsilon)) \leq K^{s(n)}/\varepsilon^{n+1} \). Without loss of generality, we may assume \(K \geq 1 \).

It follows that if \(f \) is an \(E(\varepsilon) \)-polynomial and \(s = \sum_{j=0}^{\infty}(2/p)^j = 1/(1 - (2/p)) \), then

\[
\|f\|_q \leq \|f\|_{p(n)} \leq K^{s(n)}\|f\|_2 \leq K^s\frac{1}{\varepsilon^{n+1}}\|f\|_2.
\]

Let \(c = 1/\log(p/2) \). Since \(n < \log q/\log(p/2) \), the inequality above shows that

\[
\|f\|_q \leq K^s\frac{1}{\varepsilon q^c} \|f\|_2
\]

whenever \(f \in \text{Trig}_{E(\varepsilon)}(G) \). This establishes \((3) \).

Applications.

Corollary 1. If \(\mu \) is a Borel measure on \(G \) and \(\sum_{\gamma \in \Gamma} |\hat{\mu}(\gamma)|^r < \infty \) for some \(r < \infty \), then \(\mu \) is \(L^p \)-improving.

Remark. This includes the case of \(|\hat{\mu}(\gamma)| = O(n^{-\alpha}) \), \(\alpha > 0 \).

Proof. Since \(\sum_{\gamma \in \Gamma} |\hat{\mu}(\gamma)|^r \geq \sum_{\gamma \in E(\varepsilon)} |\hat{\mu}(\gamma)|^r \geq \varepsilon^r |E(\varepsilon)| \), \(E(\varepsilon) \) is a finite set for all \(\varepsilon > 0 \), hence a \(\Lambda(p) \) set for all \(p > 2 \) with \(\Lambda(p, E(\varepsilon)) \leq O(\varepsilon^{-r}) \).

It is known [1] that if \(\mu \) is a probability measure on the circle which is \(L^p \)-improving, then \(\sup_{n \neq 0} |\hat{\mu}(\gamma)| < 1 \). This is not true for other groups. However we do have

Corollary 2. Let \(2 < p < \infty \). If \(\mu \) convolves \(L^2(G) \) to \(L^p(G) \), then

\[
\limsup_{\gamma \in \Gamma} |\hat{\mu}(\gamma)| \leq \sqrt{2/p}\|\mu\|.
\]

Proof. It is shown in [9, 3.4] that if an infinite set \(E \subseteq \Gamma \) is a \(\Lambda(p) \) set then

\[
\Lambda(p, E) \geq O(\sqrt{p}).
\]

If \(\varepsilon > \sqrt{2/p}\|\mu\| \), this fact, together with \((3) \) of the main theorem, shows that \(E(\varepsilon) \) must be a finite set.
REMARK. By duality μ convolves L^2 to L^p for some $p > 2$ if and only if μ convolves $L^{p'}$ to L^2, where $1/p + 1/p' = 1$. Thus Corollary 2 may be restated as

COROLLARY 2'. Let $1 < p < 2$. If μ convolves L^p to L^2, then

$$\limsup_{\gamma \in \Gamma} |\hat{\mu}(\gamma)| \leq \sqrt{2 - (2/p)}\|\mu\|.$$

COROLLARY 3. If μ convolves L^2 to $\bigcap_{1<p<\infty} L^p$, or equivalently, μ maps $\bigcup_{1<p<2} L^p$ to L^2, then $\limsup_{\gamma \in \Gamma} |\hat{\mu}(\gamma)| = 0$.

Corollary 3 answers a question posed by McGehee, which was communicated to us by Graham.

COROLLARY 4. If a measure μ has the property that $\inf\{|\hat{\mu}(\gamma)|: \hat{\mu}(\gamma) \neq 0\} > 0$, then μ is L^p-improving if and only if the cardinality of the support of $\hat{\mu}$ is finite.

PROOF. Sufficiency is clear. For necessity note that the hypotheses imply that $\text{supp} \hat{\mu}$ is contained in a $\Lambda(p)$ set for some $p > 2$. A basic property of $\Lambda(p)$ sets is that such measures are actually L^p functions [4]; so $\limsup_{\gamma \in \Gamma} |\hat{\mu}(\gamma)| = 0$.

Much is known about the structure of $\Lambda(p)$ sets (cf., [4, Chapter 6 and 9]). To cite but one example: it is known that if A is an arithmetic progression of length N, and E is a $\Lambda(p)$ set for some $p > 2$, then $|A \cap E| \leq CA(p,E)^2N^{2/p}$, where C is a constant independent of N, E and p [9, 3.5]. (Here $|\cdot|$ denotes the cardinality of the set.)

Thus if μ is an L^p-improving measure and $\|\mu\| \leq 1$, then for each $0 < \epsilon \leq 1$ and $2 < p < \infty$

$$|A \cap E(\epsilon)| \leq C_1 \frac{C_2}{\epsilon^2} p^{-2C_2 \log \epsilon N^{2/p}},$$

where C_1 and C_2 are constants independent of p, ϵ and N. Taking

$$p = (-1/C_2 \log \epsilon) \log N$$

we obtain

COROLLARY 5. Let μ be an L^p-improving measure with $\|\mu\| \leq 1$. There are constants C_1 and C_2, independent of N, so that if A is an arithmetic progression of length N, then

$$|A \cap E(\epsilon)| \leq C_1 (\log N)^{-2C_2 \log \epsilon}.$$

A measure μ, acting as a convolution operator from L^1 to L^1, is said to be an Enflo operator if there is a subspace Y of L^1, isomorphic to L^1, on which μ is an isomorphism. In [8] Rosenthal proves that if for each $\epsilon > 0$, $\{\gamma: |\hat{\mu}(\gamma)| > \epsilon\}$ is a $\Lambda(p)$ set for some $p > 2$, then the measure μ is non-Enflo. Consequently, all L^p-improving measures are non-Enflo.

We will say that a measure μ has property (\ast) if whenever R is an infinite dimensional reflexive subspace of L^1, and $\mu|_R$ is an isomorphism onto its range, then R is isomorphic to a Hilbert space. Rosenthal asks in [8] if there are any measures μ which have property (\ast) and for which $\limsup_{\gamma \in \Gamma} |\hat{\mu}(\gamma)| \neq 0$. Our final proposition answers this question affirmatively.
PROPOSITION. Any L^p-improving measure has property (*).

REMARKS 1. This is a generalization of the fact that the $E(\varepsilon)$ sets for an L^p-improving measure are $\Lambda(p)$ for all $p < \infty$, so that $L^{p}_{E(\varepsilon)} \cong L^2$.

2. Rosenthal has communicated to us that Bourgain, in an unpublished proof, showed that Riesz products have property (*).

PROOF. Let μ be an L^p-improving measure and R an infinite dimensional reflexive subspace of L^1. Then R is isomorphic to a subspace of L^p for some $p > 1$ [7]. Fix $1 < r < p$ and choose $R_1 \cong R$ as in [8] so that $R_1 \subseteq L^r$ and $\mu|_{R_1}$ is an isomorphism onto its range. R is closed in L^1; hence R_1 is closed in L^r and $\mu \ast R_1$ is a closed subspace of L^1.

Since μ is L^p-improving there is a constant $\delta > 0$ so that $\mu \ast L^r \subseteq L^{r+\delta}$. In particular, $\mu \ast R_1 \subseteq L^{r+\delta}$. Since $\mu \ast R_1$ is closed in L^1, it is closed in $L^{r+\delta}$, and thus R is isomorphic to a closed subspace of $L^{r+\delta}$.

Fix r_1, with $r < r_1 < r + \delta$ and let $s = (r + \delta)/r$. Let $r(n) = r_{1}^{n}/r_{n+1}^{n-1}$. The complex interpolation method shows that $\mu \ast L^{r(n)} \subseteq L^{r(n)}s$ for all $n \geq 0$. Suppose we inductively assume that $R \cong R_{n+1}$, a closed subspace of $L^{r(n)}$, and $\mu|_{R_{n+1}}$ is an isomorphism onto its range. Then $R \cong \mu \ast R_{n+1}$, a closed subspace of $L^{r(n)s}$, and since $r(n+1) < r(n)s$, there is a closed subspace R_{n+2} of $L^{r(n+1)}$ isomorphic to R on which μ is an isomorphism. If n is chosen so that $r(n) \geq 2$, then R is isomorphic to $\mu \ast R_{n+1}$, a closed subspace of L^2, proving the result.

In conclusion, we would like to thank C. Graham for introducing us to the notion of L^p-improving measures.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON (T6G 2H1), ALBERTA, CANADA