Spectrum of the product of operators
HTML articles powered by AMS MathViewer
- by Milan Hladnik and Matjaž Omladič
- Proc. Amer. Math. Soc. 102 (1988), 300-302
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920990-2
- PDF | Request permission
Abstract:
It is shown that the product of two operators on a Hilbert space has real spectrum if one of them is symmetric and the other is positive. Also, the product of two positive operators has positive spectrum.References
- William N. Anderson Jr., E. James Harner, and George E. Trapp, Eigenvalues of the difference and product of projections, Linear and Multilinear Algebra 17 (1985), no. 3-4, 295–299. MR 800038, DOI 10.1080/03081088508817661
- Huyun Sha, Estimation of the eigenvalues of $AB$ for $A>0,\;B>0$, Linear Algebra Appl. 73 (1986), 147–150. MR 818897, DOI 10.1016/0024-3795(86)90236-3
- Matjaž Omladič, Spectra of the difference and product of projections, Proc. Amer. Math. Soc. 99 (1987), no. 2, 317–318. MR 870792, DOI 10.1090/S0002-9939-1987-0870792-X
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 300-302
- MSC: Primary 47A10,; Secondary 47A12
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920990-2
- MathSciNet review: 920990