Fatou’s lemma in infinite-dimensional spaces
HTML articles powered by AMS MathViewer
- by Nicholas C. Yannelis
- Proc. Amer. Math. Soc. 102 (1988), 303-310
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920991-4
- PDF | Request permission
Abstract:
Employing recent results of M. Ali Khan we provide an infinite-dimensional version of the Fatou Lemma, which includes as a special case the result of Khan and Majumdar [15].References
- Zvi Artstein, A note on Fatou’s lemma in several dimensions, J. Math. Econom. 6 (1979), no. 3, 277–282. MR 564197, DOI 10.1016/0304-4068(79)90013-2
- Robert J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1–12. MR 185073, DOI 10.1016/0022-247X(65)90049-1
- Robert J. Aumann, An elementary proof that integration preserves uppersemicontinuity, J. Math. Econom. 3 (1976), no. 1, 15–18. MR 403571, DOI 10.1016/0304-4068(76)90003-3 J. Diestel, Remarks on weak compactness in ${L_1}(\mu ,X)$, Glasgow Math. J. 18 (1977), 87-91.
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- Nicolae Dinculeanu, Linear operations on $L^{p}$-spaces, Vector and operator valued measures and applications (Proc. Sympos., Alta, Utah, 1972) Academic Press, New York, 1973, pp. 109–124. MR 0341066
- Liu Dsosu and Cheng Shaozhong, On fixed point theorems for random set-valued maps, Nonlinear Anal. 7 (1983), no. 3, 309–323. MR 693448, DOI 10.1016/0362-546X(83)90075-5 N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- Werner Hildenbrand, Core and equilibria of a large economy, Princeton Studies in Mathematical Economics, No. 5, Princeton University Press, Princeton, N.J., 1974. With an appendix to Chapter 2 by K. Hildenbrand. MR 0389160
- Werner Hildenbrand and Jean-François Mertens, On Fatou’s lemma in several dimensions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 151–155. MR 277681, DOI 10.1007/BF00538866
- C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53–72. MR 367142, DOI 10.4064/fm-87-1-53-72
- M. Ali Khan, Equilibrium points of nonatomic games over a Banach space, Trans. Amer. Math. Soc. 293 (1986), no. 2, 737–749. MR 816322, DOI 10.1090/S0002-9947-1986-0816322-3
- M. Ali Khan, On the integration of set-valued mappings in a nonreflexive Banach space. II, Simon Stevin 59 (1985), no. 3, 257–267. MR 833482 —, An alternative proof of Diestel’s Theorem, Glasgow Math. J. 25 (1984), 45-46.
- M. Ali Khan and Mukul Majumdar, Weak sequential convergence in $L_1(\mu ,X)$ and an approximate version of Fatou’s lemma, J. Math. Anal. Appl. 114 (1986), no. 2, 569–573. MR 833611, DOI 10.1016/0022-247X(86)90108-3
- Nikolaos S. Papageorgiou, Representation of set valued operators, Trans. Amer. Math. Soc. 292 (1985), no. 2, 557–572. MR 808737, DOI 10.1090/S0002-9947-1985-0808737-3 A. Rustichini, A counterexample to Fatou’s Lemma in infinite dimensional spaces, Department of Math., Univ. of Minnesota, 1986.
- David Schmeidler, Fatou’s lemma in several dimensions, Proc. Amer. Math. Soc. 24 (1970), 300–306. MR 248316, DOI 10.1090/S0002-9939-1970-0248316-7
- J. J. Uhl Jr., The range of a vector-valued measure, Proc. Amer. Math. Soc. 23 (1969), 158–163. MR 264029, DOI 10.1090/S0002-9939-1969-0264029-1
- Nicholas C. Yannelis, Equilibria in noncooperative models of competition, J. Econom. Theory 41 (1987), no. 1, 96–111. MR 875986, DOI 10.1016/0022-0531(87)90007-X
Similar Articles
- Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A20,, 28B20,46B22,46G10,90A14
- Retrieve articles in all journals with MSC: 28A20,, 28B20,46B22,46G10,90A14
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 303-310
- MSC: Primary 28A20,; Secondary 28B20,46B22,46G10,90A14
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920991-4
- MathSciNet review: 920991