On Hörmander’s ratio theorems
HTML articles powered by AMS MathViewer
- by Fatma B. Jamjoom and N. Zaheer
- Proc. Amer. Math. Soc. 102 (1988), 311-316
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920992-6
- PDF | Request permission
Abstract:
In this paper we prove a theorem concerning the coincidence of ranges of the ratio of abstract homogeneous polynomials and the corresponding ratio of their polars. We employ the coincidence theorem on symmetric multilinear forms (proved recently by the authors [6 or 5]) to prove our theorem. The main result deduces two ratio theorems due to Hörmander [4], one being an improvement upon his version in the complex plane.References
- N. Bourbaki, Éléments de mathématique. XIV. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre VI: Groupes et corps ordonnés. Chapitre VII: Modules sur les anneaux principaux, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1179, Hermann & Cie, Paris, 1952 (French). MR 0049861 J. H. Grace, On the zeros of a polynomial, Proc. Cambridge Philos. Soc. 11 (1900-1902), 352-357.
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Lars Hörmander, On a theorem of Grace, Math. Scand. 2 (1954), 55–64. MR 62844, DOI 10.7146/math.scand.a-10395 Fatma B. Jamjoom, Certain aspects of the theory of abstract homogeneous polynomials, M.Sc. thesis, King Saud Univ., Riyadh, 1985.
- Fatma B. Jamjoom and Neyamat Zaheer, A coincidence theorem for symmetric multilinear forms, J. Math. Anal. Appl. 130 (1988), no. 1, 171–190. MR 926835, DOI 10.1016/0022-247X(88)90393-9
- Morris Marden, Geometry of polynomials, 2nd ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR 0225972 B. L. van der Waerden, Algebra, Vol. 1, 4th ed., Die Grundlehren der Math. Wissenschaften, Band 33, Ungar, New York, 1970.
- J. L. Walsh, On the location of the roots of certain types of polynomials, Trans. Amer. Math. Soc. 24 (1922), no. 3, 163–180. MR 1501220, DOI 10.1090/S0002-9947-1922-1501220-0
- Neyamat Zaheer, On polar relations of abstract homogeneous polynomials, Trans. Amer. Math. Soc. 218 (1976), 115–131. MR 401719, DOI 10.1090/S0002-9947-1976-0401719-X
- Neyamat Zaheer and Mahfooz Alam, Zeros of polar-composite polynomials in algebraically closed fields, Proc. London Math. Soc. (3) 40 (1980), no. 3, 527–552. MR 572018, DOI 10.1112/plms/s3-40.3.527
- Spiros P. Zervos, Aspects modernes de la localisation des zéros des polynomes d’une variable, Ann. Sci. École Norm. Sup. (3) 77 (1960), 303–410 (French). MR 0125944, DOI 10.24033/asens.1096
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 311-316
- MSC: Primary 30C15,; Secondary 12D10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920992-6
- MathSciNet review: 920992