Smooth convex $t$-norms do not exist
HTML articles powered by AMS MathViewer
- by C. Alsina and M. S. Tomás
- Proc. Amer. Math. Soc. 102 (1988), 317-320
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920993-8
- PDF | Request permission
Abstract:
We show that smooth convex $t$-norms do not exist.References
- J. Aczél, Lectures on functional equations and their applications, Mathematics in Science and Engineering, Vol. 19, Academic Press, New York-London, 1966. Translated by Scripta Technica, Inc. Supplemented by the author. Edited by Hansjorg Oser. MR 0208210
- Claudi Alsina, On countable products and algebraic convexifications of probabilistic metric spaces, Pacific J. Math. 76 (1978), no. 2, 291–300. MR 506132, DOI 10.2140/pjm.1978.76.291
- C. Alsina and B. Schweizer, The countable product of probabilistic metric spaces, Houston J. Math. 9 (1983), no. 3, 303–310. MR 719088 G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1934.
- Cho-hsin Ling, Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189–212. MR 190575, DOI 10.5486/pmd.1965.12.1-4.19
- B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983. MR 790314
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 317-320
- MSC: Primary 39B05,; Secondary 26A51
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920993-8
- MathSciNet review: 920993