$c_0$-subspaces and fourth dual types
HTML articles powered by AMS MathViewer
- by Vasiliki A. Farmaki
- Proc. Amer. Math. Soc. 102 (1988), 321-328
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920994-X
- PDF | Request permission
Abstract:
For a separable Banach space $X$, we define the notion of a ${c_{0 + }}$-type on $X$ and show that the existence of such a type is equivalent to the embeddability of ${c_0}$ in $X$. All these types are weakly null and fourth dual (i.e. of the form $\tau (x) = \left \| {x + g} \right \|$ for $g \in {X^{****}}$). We define the ${l^{{l^ + }}}$-dual types on $X$ (these are generated by sequences in ${X^{**}}$) and prove that they coincide with the fourth dual types on $X$. We also prove that ${c_{0 + }}$-types are fourth dual types.References
- S. Argyros, S. Negrepontis, and Th. Zachariades, Weakly stable Banach spaces, Israel J. Math. 57 (1987), no.ย 1, 68โ88. MR 882247, DOI 10.1007/BF02769461
- Richard Haydon and Bernard Maurey, On Banach spaces with strongly separable types, J. London Math. Soc. (2) 33 (1986), no.ย 3, 484โ498. MR 850964, DOI 10.1112/jlms/s2-33.3.484
- J.-L. Krivine and B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), no.ย 4, 273โ295 (French, with English summary). MR 636897, DOI 10.1007/BF02761674
- Bernard Maurey, Types and $l_1$-subspaces, Texas functional analysis seminar 1982โ1983 (Austin, Tex.), Longhorn Notes, Univ. Texas Press, Austin, TX, 1983, pp.ย 123โ137. MR 832221
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411โ2413. MR 358307, DOI 10.1073/pnas.71.6.2411 โ, Double dual types and the Maurey characterization of Banach spaces containing ${l^1}$, Longhorn Notes, The University of Texas, Functional Analysis Seminar, 1983-84, pp. 1-36.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 321-328
- MSC: Primary 46B20,; Secondary 46B10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920994-X
- MathSciNet review: 920994