A counterexample to an F. and M. Riesz-type theorem
HTML articles powered by AMS MathViewer
- by Krzysztof Samotij
- Proc. Amer. Math. Soc. 102 (1988), 337-340
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920996-3
- PDF | Request permission
Abstract:
A premeasure is a finitely additive complex-valued function $\mu$ defined on the semiring of all connected subsets of ${\mathbf {T}}$, continuous at $\emptyset$ and with $\mu (\emptyset ) = \mu ({\mathbf {T}}) = 0$. Let $\kappa$ be a continuous increasing concave function on $[0,2\pi ]$ with $\kappa (0) = 0$. A conjecture from [3] saying that if the Poisson integral of a premeasure $\mu$ is holomorphic in the open unit disk and ${\operatorname {Var}_\kappa }(\mu ) < \infty$ then ${\lim _{\tau \to 0}}{\operatorname {Var}_\kappa }({\mu _\tau } - \mu ) = 0$ is disproved, where ${\operatorname {Var} _\kappa }(\mu ) = \sup \sum \nolimits _j {|\mu ({I_j}} )|/\sum \nolimits _j {\kappa (|{I_j}|)}$ (the supremum is taken over all finite partitions of ${\mathbf {T}}$ into connected subsets ${I_j}$) and ${\mu _\tau }$ denotes the $\tau$-translation of $\mu$.References
- Boris Korenblum, An extension of the Nevanlinna theory, Acta Math. 135 (1975), no. 3-4, 187–219. MR 425124, DOI 10.1007/BF02392019
- B. Korenblum, A generalization of two classical convergence tests for Fourier series, and some new Banach spaces of functions, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 215–218. MR 707960, DOI 10.1090/S0273-0979-1983-15160-1
- Boris Korenblum, On a class of Banach spaces of functions associated with the notion of entropy, Trans. Amer. Math. Soc. 290 (1985), no. 2, 527–553. MR 792810, DOI 10.1090/S0002-9947-1985-0792810-2
Similar Articles
- Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30H05,, 28A12,46E99
- Retrieve articles in all journals with MSC: 30H05,, 28A12,46E99
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 337-340
- MSC: Primary 30H05,; Secondary 28A12,46E99
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920996-3
- MathSciNet review: 920996