Regular variation in $\textbf {R}^k$
HTML articles powered by AMS MathViewer
- by Mark M. Meerschaert
- Proc. Amer. Math. Soc. 102 (1988), 341-348
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920997-5
- PDF | Request permission
Abstract:
Researchers investigating certain limit theorems in probability have discovered a multivariable analogue to Karamataβs theory of regularly varying functions. The method uses elements of real analysis and Lie groups to analyze the asymptotic behavior of functions and measures on ${{\mathbf {R}}^k}$. We present an account here which is independent of probabilistic considerations.References
- L. de Haan, E. Omey, and S. Resnick, Domains of attraction and regular variation in $\textbf {R}^{d}$, J. Multivariate Anal. 14 (1984), no.Β 1, 17β33. MR 734097, DOI 10.1016/0047-259X(84)90045-9
- A. L. Jakymiv, Multidimensional Tauberian theorems and their application to Bellman-Harris branching processes, Mat. Sb. (N.S.) 115(157) (1981), no.Β 3, 463β477, 496 (Russian). MR 628221 M. Meerschaert, Multivariable domains of attraction and regular variation, Doctoral Dissertation, University of Michigan, 1984.
- Mark M. Meerschaert, Regular variation and domains of attraction in $\textbf {R}^k$, Statist. Probab. Lett. 4 (1986), no.Β 1, 43β45. MR 822725, DOI 10.1016/0167-7152(86)90038-6
- Mark M. Meerschaert, Domains of attraction of nonnormal operator-stable laws, J. Multivariate Anal. 19 (1986), no.Β 2, 342β347. MR 853063, DOI 10.1016/0047-259X(86)90037-0
- Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936, DOI 10.1007/BFb0079658 A. Stain, Regular variation in ${{\mathbf {R}}^d}$ and the Abel-Tauber Theorem, Technical Report T. W. 189, Mathematisch Instituut Rigksuniversiteit Groningen, The Netherlands.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 341-348
- MSC: Primary 26B30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920997-5
- MathSciNet review: 920997