On extreme points of families described by subordination
HTML articles powered by AMS MathViewer
- by Rahman Younis
- Proc. Amer. Math. Soc. 102 (1988), 349-354
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920998-7
- PDF | Request permission
Abstract:
Let $s\left ( F \right )$ denote the set of analytic functions in $D = \{ z:|z| < 1\}$ subordinate to an analytic function $F$. It is shown that if $F$ is a polynomial then the extreme points of the closed convex hull of $s(F) \subset \{ F \circ \phi :\phi \in {\text {extreme}}\;{\text {points}}\;{\text {of}}\;B(H_0^\infty )\}$. Also if $F(z) = {((z - \alpha )/(1 - \bar \alpha z))^n},|\alpha | < 1$ and $n$ is a positive integer then the extreme points of the closed convex hull of $s(F) = \{ F \circ \phi :\phi \in {\text {extreme}}\;{\text {points}}\;{\text {of}}\;B(H_0^\infty )\}$. An analogue of Ryff’s theorem, and other results related to subordination in Bergman spaces have been obtained.References
- Yusuf Abu-Muhanna, On extreme points of subordination families, Proc. Amer. Math. Soc. 87 (1983), no. 3, 439–443. MR 684634, DOI 10.1090/S0002-9939-1983-0684634-5
- D. A. Brannan, J. G. Clunie, and W. E. Kirwan, On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A. I. 523 (1973), 18. MR 338343
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- D. J. Hallenbeck and T. H. MacGregor, Subordination and extreme-point theory, Pacific J. Math. 50 (1974), 455–468. MR 361035 —, Linear problems and convexity techniques in geometric function theory, Pitman, 1984.
- Thomas H. MacGregor, Applications of extreme-point theory to univalent functions, Michigan Math. J. 19 (1972), 361–376. MR 311885
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- V. Kabaĭla, Certain properties of the functions of class $H^{\prime } _{p}$, and interpolation problems, Litovsk. Mat. Sb. 10 (1970), 471–490 (Russian, with Lithuanian and English summaries). MR 0274768
- R. R. Phelps, Extreme points in function algebras, Duke Math. J. 32 (1965), 267–277. MR 179644
- John V. Ryff, Subordinate $H^{p}$ functions, Duke Math. J. 33 (1966), 347–354. MR 192062
- G. Šapiro, Some observations concerning weighted polynomial approximation of holomorphic functions, Mat. Sb. (N.S.) 73 (115) (1967), 320–330 (Russian). MR 0217304
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 349-354
- MSC: Primary 30C80,; Secondary 30D55
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920998-7
- MathSciNet review: 920998