ON EXTREME POINTS OF FAMILIES DESCRIBED BY SUBORDINATION

RAHMAN YOUNIS

(Communicated by Paul S. Muhly)

ABSTRACT. Let $s(F)$ denote the set of analytic functions in $D = \{z: |z| < 1\}$ subordinate to an analytic function F. It is shown that if F is a polynomial then the extreme points of the closed convex hull of $s(F) \subset \{F \circ \phi: \phi \in \text{extreme points of } B(H_0^\infty)\}$. Also if $F(z) = ((z - \alpha)/(1 - \bar{\alpha}z))^n$, $|\alpha| < 1$ and n is a positive integer then the extreme points of the closed convex hull of $s(F) = \{F \circ \phi: \phi \in \text{extreme points of } B(H_0^\infty)\}$. An analogue of Ryff's theorem, and other results related to subordination in Bergman spaces have been obtained.

1. Introduction. Let D denote the open unit disc in the complex plane, and let A denote the set of functions analytic in D. Then A is a locally convex linear topological space with respect to the topology given by uniform convergence on compact subsets of D. A function $f \in A$ is said to be in the space H^p ($1 \leq p < \infty$) if

$$
||f||_p = \lim_{r \to 1} \left\{ \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \right\}^{1/p} < \infty.
$$

The Bergman space A^p ($1 \leq p < \infty$) is the set of all functions f in A such that

$$
||f||_{A^p} = \left\{ \int_D |f(z)|^p \, dA(z) \right\}^{1/p} < \infty.
$$

We note that $H^p \subset A^p$.

Let $B(H^\infty)$ denote the subset of A consisting of functions φ satisfying $|\varphi(z)| < 1$ for $|z| < 1$, and $B(H_0^\infty)$ denote those functions in $B(H^\infty)$ which vanish at the origin. A function f is said to be subordinate to F if $f = F \circ \phi$ for some $\phi \in B(H_0^\infty)$. This relation will be denoted by $f < F$. We let $s(F)$ denote the set $\{f: f < F\}$, and for any compact subset H of A, we let $s(H) = \{f: f < F$ for some $F \in H\}$. The closed convex hull of $s(F)$ will be denoted by $Hs(F)$, and let $\text{Ext } Hs(F)$ denote the set of all extreme points of $Hs(F)$. In case F is univalent, then $f < F$ is equivalent to saying that $f(0) = F(0)$ and $f(D) \subset F(D)$.

Let F be a function in A. Then in [4] it is shown that $\{F(xz): |x| = 1\} \subset \text{Ext } Hs(F)$. In case F is univalent and $F(D)$ is a Jordan domain then $\text{Ext } Hs(F) \subset \{F \circ \phi: \phi \in \text{Ext } B(H_0^\infty)\}$ [1; 5, p. 143]. Recently, it has been announced by Y. Abu-Muhanna and D. Hallenbeck (Abstracts Amer. Math. Soc. 7 (1986), p. 254)

Received by the editors July 14, 1986 and, in revised form, November 3, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 30C80.

Key words and phrases. Analytic functions, polynomials, extreme points, subordination, Bergman spaces.

©1988 American Mathematical Society
that the above result is true for any univalent function F. Another result in [4] says that if $F \in H^p$ for some $p (1 < p < \infty)$ and $f \in Hs(F)$ such that $\|f\|_p = \|F\|_p$ then $f \in \text{Ext} Hs(F)$. For more details, see Chapter 8 in [5]. In this paper, we will use the fact [6] that if $f \in \text{Ext} Hs(F)$, then $f = F \circ \phi$ for some $\phi \in B(H^\infty_0)$. The characterization of $\text{Ext} B(H^\infty_0)$ can be found in [7, p. 138].

The object of this paper is to study the set $\text{Ext} Hs(F)$ when F is a nonunivalent function in A. The most natural candidate for such functions are the polynomials. The first result in this direction is Theorem 1 of §2, which states that if F is a polynomial then $\text{Ext} Hs(F) \subset \{F \circ \phi : \phi \in \text{Ext} B(H^\infty_0)\}$. Another result is Theorem 2 of the same section, which says that if $F_\alpha(z) = ((z - \alpha)/(1 - \alpha z))^n$, $|\alpha| < 1$ and n is a positive integer, then $\text{Ext} Hs(F_\alpha) = \{F_\alpha \circ \phi : \phi \in \text{Ext} B(H^\infty_0)\}$.

In §3, an analogue of Ryff’s theorem [10, Theorem 3] is obtained for Bergman spaces (Theorem 3). Other results related to A^p subordination are discussed.

I would like to thank Professor W. Deeb for a very helpful discussion.

2. Families described by subordination. Recently, it has been announced (see the introduction) that if F is a univalent function then $\text{Ext} Hs(F) \subset \{F \circ \phi : \phi \in \text{Ext} B(H^\infty_0)\}$.

In the next theorem, we consider an arbitrary polynomial, which need not be univalent.

THEOREM 1. If F is a polynomial then

$$\text{Ext} Hs(F) \subset \{F \circ \phi : \phi \in \text{Ext} B(H^\infty_0)\}.$$

First, let us consider a special case illustrating the idea of the proof before presenting the complete form.

Let $F(z) = z + z^2$, and suppose that $F \circ \phi$ is an extreme point of $Hs(F)$, $\phi \in B(H^\infty_0)$. If ϕ were not an extreme point of $B(H^\infty_0)$, then by [7, p. 139], there exists $h \in B(H^\infty)$, $h \neq 0$, such that $|h| = 1 - |\phi|$ a.e. on ∂D. Thus $|\phi + \alpha h| \leq 1$ for $|\alpha| \leq 1$. Let 1 and w be the square roots of unity, and $\alpha^2 = -1$. Then it is easy to establish the following identities:

1. $\phi = \frac{1}{2}(\phi + zh) + \frac{1}{2}(\phi + wz)$.
2. $\phi^2 + z^2 h^2 = \frac{1}{2}(\phi + zh)^2 + \frac{1}{2}(\phi + wz)^2$.
3. $\phi^2 - z^2 h^2 = \frac{1}{2}(\phi + \alpha zh)^2 + \frac{1}{2}(\phi + \alpha wz h^2)^2$.
4. $\phi = \frac{1}{2}(\phi + \alpha zh) + \frac{1}{2}(\phi + \alpha wz)h$.

From (1) and (2) we get

$$\phi + (\phi^2 + z^2 h^2) = \frac{1}{2}[(\phi + zh) + (\phi + zh)^2] + \frac{1}{2}[(\phi + wz) + (\phi + wz)^2].$$

From (3) and (4) we get

$$\phi + (\phi^2 - z^2 h^2) = \frac{1}{2}[(\phi + \alpha zh) + (\phi + \alpha zh)^2] + \frac{1}{2}[(\phi + \alpha wz h^2) + (\phi + \alpha wz h^2)^2].$$

Since $|\phi + zh| \leq 1$, $|\phi + wz| \leq 1$, $|\phi + \alpha zh| \leq 1$ and $|\phi + \alpha wz| \leq 1$, and each one vanishes at the origin, we get from (5) and (6)

$$h_1 = \phi + (\phi^2 + z^2 h^2) \quad \text{and} \quad h_2 = \phi + (\phi^2 - z^2 h^2) \quad \text{belong to} \quad Hs(F).$$

Thus by (7), $F \circ \phi = \phi + \phi^2 = \frac{1}{2}h_1 + \frac{1}{2}h_2$. Since $h \neq 0$ we get $h_1 \neq h_2$. Consequently $F \circ \phi$ cannot be an extreme point of $Hs(F)$. This contradiction proves Theorem 1 in case $F(z) = z + z^2$.

PROOF OF THEOREM 1. Let $F(z) = A_0 + A_1 z + A_2 z^2 + \cdots + A_{n-1} z^{n-1} + A_n z^n$, $A_n \neq 0$, and let $F \circ \phi$ be an extreme point of $Hs(F)$, $\phi \in B(H^\infty_0)$. If ϕ were not an extreme point of $B(H^\infty_0)$, then the argument used in the illustration of Theorem 1
shows that there exists \(h \in B(H^\infty), h \neq 0 \), such that for any \(\theta, 0 \leq \theta < 2\pi \), we have \(|\phi \pm e^{i\theta}zh| \leq 1 \).

Let \(1, w, w^2, \ldots, w^{n-1} \) be the \(n \)th roots of unity, and \(\alpha^n = -1 \). Then we claim the following:

1. For \(k = 1, 2, \ldots, n-1 \), \(n\phi^k = \phi + wzh) + \cdots + (\phi + w^{n-1}zh)^k + (\phi + zh)^k \).
2. \(n(\phi^n + z^n) = (\phi + wzh) + \cdots + (\phi + w^{n-1}zh)^n + (\phi + zh)^n \).
3. \(n(\phi^n - z^n) = (\phi + \alpha wzh) + \cdots + (\phi + \alpha w^{n-1}zh)^n + (\phi + \alpha zh)^n \).
4. For \(k = 1, 2, \ldots, n-1 \), \(n\phi^k = (\phi + \alpha wzh)^k + \cdots + (\phi + \alpha w^{n-1}zh)^k + (\phi + \alpha zh)^k \).

To prove (1), we write

\[
(\phi + wzh)^k = \phi^k + \binom{k}{1} \phi^{k-1}wzh + \binom{k}{2} \phi^{k-2}w^2z^2h^2 + \cdots + w^kz^kh^k,
\]

\[
(\phi + w^2zh)^k = \phi^k + \binom{k}{1} \phi^{k-1}w^2zh + \binom{k}{2} \phi^{k-2}(w^2)^2z^2h^2 + \cdots + (w^k)^2w^kh^k,
\]

\[
(\phi + w^{n-1}zh)^k = \phi^k + \binom{k}{1} \phi^{k-1}w^{n-1}zh
\]

\[
+ \binom{k}{2} \phi^{k-2}(w^{n-1}z)^2h^2 + \cdots + (w^k)^{n-1}z^kh^k,
\]

\[
(\phi + zh)^k = \phi^k + \binom{k}{1} \phi^{k-1}zh + \binom{k}{2} \phi^{k-2}z^2h^2 + \cdots + z^kh^k.
\]

By adding these identities and taking into account the fact that \(1 + (w^k) + (w^k)^2 + \cdots + (w^k)^{n-1} = 0 \) for \(k = 1, 2, 3, \ldots, n-1 \), we get (1).

To prove (2), we write

\[
(\phi + wzh)^n = \phi^n + \binom{n}{1} \phi^{n-1}wzh + \binom{n}{2} \phi^{n-2}w^2z^2h^2 + \cdots + w^nz^nh^n,
\]

\[
(\phi + w^2zh)^n = \phi^n + \binom{n}{1} \phi^{n-1}w^2zh + \binom{n}{2} \phi^{n-2}(w^2)^2z^2h^2 + \cdots + (w^2)^2w^nh^n,
\]

\[
(\phi + w^{n-1}zh)^n = \phi^n + \binom{n}{1} \phi^{n-1}w^{n-1}zh
\]

\[
+ \binom{n}{2} \phi^{n-2}(w^{n-1}z)^2h^2 + \cdots + (w^k)^{n-1}z^nh^n,
\]

\[
(\phi + zh)^n = \phi^n + \binom{n}{1} \phi^{n-1}zh + \binom{n}{2} \phi^{n-2}z^2h^2 + \cdots + z^nh^n.
\]

By adding these identities and taking into account the fact that \(w^n = 1 \) and \(1 + (w^k) + (w^k)^2 + \cdots + (w^k)^{n-1} = 0 \) for \(k = 1, 2, \ldots, n-1 \), we get identity (2).
Similarly, we obtain (3) and (4). Now, from (1) and (2) we have:

\[
\begin{align*}
 h_1 &= A_0 + A_1 \phi + A_2 \phi^2 + \cdots + A_n \phi^n + A_n z^n h^n \\
 &= \frac{1}{n} \left[A_0 + A_1 (\phi + wzh) + A_2 (\phi + wzh)^2 + \cdots + A_n (\phi + wzh)^n \right] \\
 &\quad + \frac{1}{n} \left[A_0 + A_1 (\phi + w^2 zh) + A_2 (\phi + w^2 zh)^2 + \cdots + A_n (\phi + w^2 zh)^n \right] \\
 \vdots \\
 &\quad + \frac{1}{n} \left[A_0 + A_1 (\phi + w^{n-1} zh) + A_2 (\phi + w^{n-1} zh)^2 + \cdots + A_n (\phi + w^{n-1} zh)^n \right] \\
 &\quad + \frac{1}{n} \left[A_0 + A_1 (\phi + zh) + A_2 (\phi + zh)^2 + \cdots + A_n (\phi + zh)^n \right] \\
 &= \frac{1}{n} \left[F(\phi + wzh) + F(\phi + w^2 zh) + \cdots + F(\phi + zh) \right].
\end{align*}
\]

Thus \(h_1 \in Hs(F) \). Similarly, from (3) and (4) we obtain \(h_2 = A_0 + A_1 \phi + A_2 \phi^2 + \cdots + A_n \phi^n - A_n z^n h^n \in Hs(F) \). Finally, since \(F \circ \phi = \frac{1}{2} h_1 + \frac{i}{2} h_2 \), and \(h \neq 0 \), \(F \circ \phi \) cannot be an extreme point of \(Hs(F) \). This contradiction completes the proof of Theorem 1.

If \(F \) is an analytic function in \(D \), then by \([4]\), \(\{F(xz) : |x|\} \subseteq Ext Hs(F) \). If \(c \) is a complex number satisfying \(|c| < 1 \) and \(c \neq -1 \) and \(F_0(z) = ((1 + cz)/(1 - z))^\alpha \), then it is known \([2]\) that \(Ext B(H_0) = \{F_0(xz) : |x| = 1\} \). The following theorem is suggested by the above results and Theorem 1.

THEOREM 2. Let \(\alpha \) be a complex number satisfying \(|\alpha| < 1 \), and let \(n \) be a positive integer. If \(F_\alpha(z) = ((z - \alpha)/(1 - \bar{\alpha}z))^n \), then

\[
 Ext Hs(F_\alpha) = \{F_\alpha \circ \phi : \phi \in Ext B(H_0^\infty)\}.
\]

PROOF. Let \(((\phi - \alpha)/(1 - \bar{\alpha}\phi))^n \) be an extreme point of \(Hs(F_\alpha) \), \(\phi \in B(H_0^\infty) \). Set \(b = (\phi - \alpha)/(1 - \bar{\alpha}\phi) \). If \(\phi \) were not an extreme point of \(B(H_0^\infty) \), then by \([9, \text{Lemma 7}]\), \(b \) is not an extreme point of \(B(H_0^\infty) \). As in the illustration of Theorem 1, there exists \(h \in B(H_\infty) \), \(h \neq 0 \), such that \(|h| = 1 - |b| \) a.e. on \(\partial D \). Consequently, \(|b \pm e^{i\theta}zh| \leq 1 \) for \(0 \leq \theta < 2\pi \). Since \((b \pm e^{i\theta}zh)(0) = -\alpha \) and \((z - \alpha)/(1 - \bar{\alpha}z) \) is univalent, we get \((b \pm e^{i\theta}zh) \in s((z - \alpha)/(1 - \bar{\alpha}z)) \). Thus \((b \pm e^{i\theta}zh)^n \in s(F_\alpha) \cdots (1) \).

Let \(1, w, w^2, \ldots, w^{n-1} \) be the \(n \)th roots of unity. Then as in the proof of Theorem 1, we have:

\[
\begin{align*}
 (2) \quad n(b^n + z^n h^n) &= (b + wzh^n) + (b + w^2 zh^n) + \cdots + (b + w^{n-1}zh^n) + (b + zh^n) \\
 (3) \quad n(b^n - z^n h^n) &= (b + \alpha wzh^n) + (b + \alpha w^2 zh^n) + \cdots + (b + \alpha w^{n-1}zh^n) + (b + \alpha zh^n),
\end{align*}
\]

where \(\alpha^n = -1 \).

From (1), (2) and (3) we get \(b^n + z^n h^n \) and \(b^n - z^n h^n \in Hs(F_\alpha) \). Finally, since \(b^n = \frac{1}{2}(b^n + z^n h^n) + \frac{1}{2}(b^n - z^n h^n) \) and \(h \neq 0 \), then \(b^n \) cannot be an extreme point of \(Hs(F_\alpha) \). This contradiction completes the proof that \(Ext Hs(F_\alpha) \subseteq \{F_\alpha \circ \phi : \phi \in Ext B(H_0^\infty)\} \).

On the other hand, let \(\phi \in Ext B(H_0^\infty) \). Since \(F_\alpha \) is a finite Blaschke product, by \([9, \text{Theorem 9}]\) we have \(F_\alpha \circ \phi \) is an extreme point of \(B(H_\infty) \). Since \(Hs(F_\alpha) \subseteq B(H_\infty) \), we conclude that \(F_\alpha \circ \phi \) is an extreme point of \(Hs(F_\alpha) \). This completes the proof of Theorem 2.
3. An analogue of Ryff's theorem in Bergman spaces. In [10], Ryff proved the following remarkable result: Let \(F \in H^p \), \(0 < p < \infty \), and \(f < F \). Then \(\|f\|_p = \|F\|_p \) if and only if \(f = F \circ \phi \) for some inner function \(\phi \) with \(\phi(0) = 0 \).

Concerning \(A^p \) spaces, Ryff's theorem is not true in general. For example, let \(F(z) = z \) and \(f(z) = z^2 \). Then \(f < F \) and it is easy to see that \(\|f\|_{A^p} \neq \|F\|_{A^p} \) for any \(p, 0 < p < \infty \). This suggests the following analogue of Ryff's theorem.

Theorem 3. Let \(F \) be a function in \(A^p \), \(0 < p < \infty \), and \(f < F \). Then \(\|f\|_{A^p} = \|F\|_{A^p} \) if and only if \(f = F \circ \phi \), \(\phi(z) = cz \) for some \(c, |c| = 1 \).

Proof. Let \(\|f\|_{A^p} = \|F\|_{A^p} \). Thus

\[
\int_0^1 \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \, dr = \int_0^1 \int_0^{2\pi} |F(re^{i\theta})|^p \, d\theta \, dr.
\]

For \(g \in A \) and \(0 < p < \infty \), let \(m_p(g,r) = (1/2\pi) \int_0^{2\pi} |g(re^{i\theta})|^p \, d\theta \). For \(0 < r < 1 \), let \(h(r) = m_p(F,r) - m_p(f,r) \). By the Littlewood subordination theorem [3, p. 191], \(h \) is nonnegative on \((0,1)\), and clearly it is continuous there. This together with equation (1) implies that \(h \in L^1(0,1) \). Hence \(\int_0^1 h(r) \, dr = 0 \) and \(h \) is continuous on \((0,1)\) we get \(h(r) = 0 \) on \((0,1)\). Thus \(m_p(f,r) = m_p(F,r) \). Hence by [3, p. 191], \(f(z) = F(cz) \), \(|c| = 1 \), as required.

Conversely, let \(f(z) = F(cz) \), \(|c| = 1 \). Put \(c = \cos \alpha + i \sin \alpha \) and \(z = x + iy \). Then \(c = (x \cos \alpha - y \sin \alpha) + i(y \cos \alpha + x \sin \alpha) \). Let \(T: (x,y) \to (u,v) \), where \(u \) and \(v \) are the real and imaginary parts of \(cz \). Then the Jacobian of \(T \) (denoted by \(J_T \)) is \(c^2 \). By using change of variables, we get

\[
\int_D \int |F(x,y)|^p \, dx \, dy = \int_D \int |F(u,v)|^p \, |J_T| \, du \, dv.
\]

Thus \(\|F\|_{A^p} = \|f\|_{A^p} \). This completes the proof of Theorem 3.

In [4] (see [5, p. 124]) the following result is proved.

Theorem A. Let \(F \in H^p \) for some \(p, 1 < p < \infty \), and \(f \in Hs(F) \). If \(\|f\|_p = \|F\|_p \) then \(f \in \text{Ext } Hs(F) \).

The next result is the analogue of Theorem A in \(A^p \) spaces.

Theorem 4. Let \(F \in A^p \), \(1 < p < \infty \), and \(f \in Hs(F) \). If \(\|f\|_{A^p} = \|F\|_{A^p} \) then \(f \in \text{Ext } Hs(F) \).

Proof. First, we show that if \(F \in A^p \) (\(p \geq 1 \)) then \(Hs(F) \subset A^p \), and moreover if \(f \in Hs(F) \) then \(\|f\|_{A^p} \leq \|F\|_{A^p} \). One way to see this is to use an argument similar to the one used in [4, Theorem 7]. So let \(f \in Hs(F) \). Then \(f \) can be approximated uniformly on compact subsets of \(D \), by functions of the form \(\sum_{k=1}^n \lambda_k f_k \), where \(\lambda_k \geq 0 \), \(\sum_{k=1}^n \lambda_k = 1 \) and \(f_k \in s(F) \). By the Littlewood subordination theorem we have \(m_p(f_k,r) \leq m_p(F,r) \) for \(0 < r < 1 \) and \(k = 1,2,\ldots,n \). By the Minkowski inequality we get

\[
m_p \left(\sum_{k=1}^n \lambda_k f_k, r \right) \leq \sum_{k=1}^n \lambda_k m_p(f_k,r) \leq m_p(F,r).
\]

Consequently, \(m_p(f,r) \leq m_p(F,r) \) for \(0 < r < 1 \). Thus we get

\[
\int_0^1 \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \, dr \leq \int_0^1 \int_0^{2\pi} |F(re^{i\theta})|^p \, d\theta \, dr = \|F\|^p_{A^p}.
\]

Thus \(\|f\|_{A^p} \leq \|F\|_{A^p} \), as required.
Now, suppose that \(f = \lambda g + (1 - \lambda)h \), \(g, h \in Hs(F) \). Let \(f_1 = f/\|F\|_{A^p} \), \(g_1 = g/\|F\|_{A^p} \) and \(h_1 = h/\|F\|_{A^p} \). From above, \(\|g_1\|_{A^p} \leq 1 \) and \(\|h_1\|_{A^p} \leq 1 \). Since \(f_1 = \lambda g_1 + (1 - \lambda)h_1 \), \(\|f_1\|_{A^p} = 1 \) and \(A^p \) is a strictly convex space, we get \(g_1 = h_1 = f_1 \). Consequently, \(g = h = f \). This proves that \(f \in Ext Hs(F) \), and that ends the proof of the theorem.

In case \(F \in H^p \), \(1 \leq p < \infty \), we have the following

COROLLARY 5. Let \(F \in H^p \), \(1 \leq p < \infty \), and \(f \in Hs(F) \). If \(\|f\|_{A^r} = \|F\|_{A^r} \) for some \(r \), \(1 < r \leq 2p \), then \(f \in s(F) \).

The proof of Corollary 5 requires the following known result.

THEOREM B [8, 11]. \(H^p \subset A^{2p} \), \(0 < p < \infty \).

PROOF OF COROLLARY 5. Since \(F \in H^p \), then by the proof of Theorem 7 in [4] we have \(Hs(F) \subset H^p \). Thus by Theorem B, \(Hs(F) \subset A^{2p} \). If \(1 < r \leq 2p \), then \(Hs(F) \subset A^r \). If \(f \in Hs(F) \) with \(\|f\|_{A^r} = \|F\|_{A^r} \), then by Theorem 4, \(f \) is an extreme point of \(Hs(F) \). Consequently, by [6] \(f \in s(F) \) and this completes the proof of Corollary 5.

ADDED IN PROOF. Recently the author obtained the following: If \(P \) is a polynomial and \(F \) is univalent then \(Ext Hs(P \circ F) \subset \{(P \circ F) \circ \phi : \phi \in B(H^p_0)\} \).

REFERENCES

DEPARTMENT OF MATHEMATICS, KUWAIT UNIVERSITY, P.O. BOX 5969, 13060 SAFAT, KUWAIT