On the relation between $C^*$-algebras of foliations and those of their coverings
HTML articles powered by AMS MathViewer
- by Xiaolu Wang
- Proc. Amer. Math. Soc. 102 (1988), 355-360
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920999-9
- PDF | Request permission
Abstract:
By using the theory of groupoid equivalence of P. S. Muhly, J. N. Renault and D. P. Williams (cf. [5, 7]), we identify the relation between the ${C^*}$-algebra of a foliated manifold and those of its regular covering foliations.References
- Lawrence G. Brown, Philip Green, and Marc A. Rieffel, Stable isomorphism and strong Morita equivalence of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 349–363. MR 463928, DOI 10.2140/pjm.1977.71.349
- A. Connes, A survey of foliations and operator algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 521–628. MR 679730
- Morris W. Hirsch and Xiaolu Wang, Foliations of planar regions and CCR $C^\ast$ algebras with infinite composition length, Amer. J. Math. 109 (1987), no. 5, 797–806. MR 910351, DOI 10.2307/2374488
- M. Hilsum and G. Skandalis, Stabilité des $C^{\ast }$-algèbres de feuilletages, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 3, 201–208 (French, with English summary). MR 723953, DOI 10.5802/aif.936
- Paul S. Muhly, Jean N. Renault, and Dana P. Williams, Equivalence and isomorphism for groupoid $C^\ast$-algebras, J. Operator Theory 17 (1987), no. 1, 3–22. MR 873460 J. N. Renault, A groupoid approach to ${C^*}$-algebras, Lecture Notes in Math., vol. 793, Springer-Verlag, Berlin and New York, 1980.
- Jean N. Renault, $C^{\ast }$-algebras of groupoids and foliations, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 339–350. MR 679714
- Marc A. Rieffel, Applications of strong Morita equivalence to transformation group $C^{\ast }$-algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 299–310. MR 679709
- Anne Marie Torpe, $K$-theory for the leaf space of foliations by Reeb components, J. Funct. Anal. 61 (1985), no. 1, 15–71. MR 779738, DOI 10.1016/0022-1236(85)90038-2 X. Wang, On the ${C^*}$-algebras of a family of solvable Lie groups and foliations, Ph.D. Dissertation, Univ. of California, Berkeley, 1985. —, On the classification of ${C^*}$-algebras of Morse-Smale flows on two-manifolds, Ergodic Theory Dynamical Systems (to appear). —, On the ${C^*}$-algebras of foliations of the plane, Lecture Notes in Math., vol. 1257, Springer-Verlag, Berlin and New York.
- Robert J. Zimmer, Arithmeticity of holonomy groups of Lie foliations, J. Amer. Math. Soc. 1 (1988), no. 1, 35–58. MR 924701, DOI 10.1090/S0894-0347-1988-0924701-4 T. Fack and X. Wang, ${C^*}$-algebras of Reeb foliations, preprint, 1986.
Similar Articles
- Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05,, 46L55,57R30,58G12
- Retrieve articles in all journals with MSC: 46L05,, 46L55,57R30,58G12
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 355-360
- MSC: Primary 46L05,; Secondary 46L55,57R30,58G12
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920999-9
- MathSciNet review: 920999