A construction of finite and $\sigma$-finite invariant measures in measure spaces
HTML articles powered by AMS MathViewer
- by Yoshihiro Kubokawa
- Proc. Amer. Math. Soc. 102 (1988), 373-380
- DOI: https://doi.org/10.1090/S0002-9939-1988-0921002-7
- PDF | Request permission
Abstract:
Let $T$ be a bijective nonsingular transformation on a finite measure space. We shall first construct a $\sigma$-finite and finite invariant measure by a unified method which is valid for both cases. Secondly we shall give another construction of a finite invariant measure. We shall also give a new necessary and sufficient condition of a unified form for the existence of $\sigma$-finite and finite invariant measures. Further, we shall discuss in detail ergodic transformations.References
- Alberto P. Calderón, Sur les mesures invariantes, C. R. Acad. Sci. Paris 240 (1955), 1960–1962 (French). MR 69257
- Yael Naim Dowker, Finite and $\sigma$-finite invariant measures, Ann. of Math. (2) 54 (1951), 595–608. MR 45193, DOI 10.2307/1969491
- Arshag B. Hajian and Shizuo Kakutani, Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc. 110 (1964), 136–151. MR 154961, DOI 10.1090/S0002-9947-1964-0154961-1
- Paul R. Halmos, Invariant measures, Ann. of Math. (2) 48 (1947), 735–754. MR 21963, DOI 10.2307/1969138
- Eberhard Hopf, Theory of measure and invariant integrals, Trans. Amer. Math. Soc. 34 (1932), no. 2, 373–393. MR 1501643, DOI 10.1090/S0002-9947-1932-1501643-6
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 373-380
- MSC: Primary 28D99
- DOI: https://doi.org/10.1090/S0002-9939-1988-0921002-7
- MathSciNet review: 921002