Spans of simple triods
HTML articles powered by AMS MathViewer
- by Thelma West
- Proc. Amer. Math. Soc. 102 (1988), 407-415
- DOI: https://doi.org/10.1090/S0002-9939-1988-0921008-8
- PDF | Request permission
Abstract:
We calculate and estimate the spans of objects in certain classes of continua; our main interest is in those objects with positive span.References
- C. E. Burgess, Collections and sequences of continua in the plane. II, Pacific J. Math. 11 (1961), 447–454. MR 131863
- A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199–214. MR 179766, DOI 10.4064/fm-55-3-199-214
- A. Lelek, Some problems concerning curves, Colloq. Math. 23 (1971), 93–98, 176. MR 307204, DOI 10.4064/cm-23-1-93-98
- A. Lelek, An example of a simple triod with surjective span smaller than span, Pacific J. Math. 64 (1976), no. 1, 207–215. MR 428298
- A. Lelek, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), no. 1, 35–45. MR 482680, DOI 10.4064/cm-37-1-35-45
- A. Lelek, The span and the width of continua, Fund. Math. 98 (1978), no. 3, 181–199. MR 494001, DOI 10.4064/fm-98-3-181-199
- A. Lelek and L. Mohler, Real-valued continuous functions and the span of continua, Colloq. Math. 32 (1975), no. 2, 207–209. MR 405372, DOI 10.4064/cm-32-2-207-209
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 407-415
- MSC: Primary 54F15,; Secondary 54F20
- DOI: https://doi.org/10.1090/S0002-9939-1988-0921008-8
- MathSciNet review: 921008