Tautness and locally finitely-valued Alexander-Spanier cochains
HTML articles powered by AMS MathViewer
- by Satya Deo and Atul N. Roy
- Proc. Amer. Math. Soc. 102 (1988), 426-430
- DOI: https://doi.org/10.1090/S0002-9939-1988-0921011-8
- PDF | Request permission
Abstract:
In this paper we prove that the following two subspaces are tautly embedded with respect to Alexander-Spanier cohomology based on locally finitely-valued cochains: (i) any neighborhood retract of arbitrary topological space, and (ii) any compact subset of a Hausdorff space.References
- Satya Deo, On the tautness property of Alexander-Spanier cohomology, Proc. Amer. Math. Soc. 52 (1975), 441–444. MR 380773, DOI 10.1090/S0002-9939-1975-0380773-2
- William S. Massey, Homology and cohomology theory, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 46, Marcel Dekker, Inc., New York-Basel, 1978. An approach based on Alexander-Spanier cochains. MR 0488016
- K. A. Sitnikov, Combinatorial topology of nonclosed sets. I. The first duality law; spectral duality, Amer. Math. Soc. Transl. (2) 15 (1960), 245–295. MR 0115164, DOI 10.1090/trans2/015/08
- E. H. Spanier, Tautness for Alexander-Spanier cohomology, Pacific J. Math. 75 (1978), no. 2, 561–563. MR 506212
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 426-430
- MSC: Primary 55N35
- DOI: https://doi.org/10.1090/S0002-9939-1988-0921011-8
- MathSciNet review: 921011