Almost commuting matrices need not be nearly commuting
HTML articles powered by AMS MathViewer
- by Man Duen Choi
- Proc. Amer. Math. Soc. 102 (1988), 529-533
- DOI: https://doi.org/10.1090/S0002-9939-1988-0928973-3
- PDF | Request permission
Abstract:
Let ${\mathcal {M}_n}$ be the collection of $n \times n$ complex matrices with the Hilbert-space-operator norm. There exist two concrete matrices $A,B \in {\mathcal {M}_n}$ with $||A|| = 1 - 1/n,||B|| \leq 1,||AB - BA|| \leq 2/n$, but $||A - R|| + ||B - S|| \geq 1 - 1/n$ for all commuting pairs $R,S \in {\mathcal {M}_n}$. It is shown explicitly that there is a natural obstruction which prevents almost commuting matrices to get close to any commuting pairs.References
- J. J. Bastian and K. J. Harrison, Subnormal weighted shifts and asymptotic properties of normal operators, Proc. Amer. Math. Soc. 42 (1974), 475–479. MR 380491, DOI 10.1090/S0002-9939-1974-0380491-X
- I. D. Berg, On operators which almost commute with the shift, J. Operator Theory 11 (1984), no. 2, 365–377. MR 749168 I. D. Berg and K. R. Davidson, A quantitative version of the Brown-Douglas-Fillmore theorem, preprint.
- I. D. Berg and Catherine L. Olsen, A note on almost-commuting operators, Proc. Roy. Irish Acad. Sect. A 81 (1981), no. 1, 43–47. MR 635577
- Man Duen Choi, Lifting projections from quotient $C^{\ast }$-algebras, J. Operator Theory 10 (1983), no. 1, 21–30. MR 715551
- Man Duen Choi and Erik Christensen, Completely order isomorphic and close $C^{\ast }$-algebras need not be $^{\ast }$-isomorphic, Bull. London Math. Soc. 15 (1983), no. 6, 604–610. MR 720750, DOI 10.1112/blms/15.6.604
- Kenneth R. Davidson, Almost commuting Hermitian matrices, Math. Scand. 56 (1985), no. 2, 222–240. MR 813638, DOI 10.7146/math.scand.a-12098
- P. R. Halmos, Some unsolved problems of unknown depth about operators on Hilbert space, Proc. Roy. Soc. Edinburgh Sect. A 76 (1976/77), no. 1, 67–76. MR 451002, DOI 10.1017/S0308210500019491 T. Loring. The torus and non-commutative topology, Thesis, University of California, Berkeley, 1986.
- W. A. J. Luxemburg and R. F. Taylor, Almost commuting matrices are near commuting matrices, Indag. Math. 32 (1970), 96–98. Nederl. Akad. Wetensch. Proc. Ser. A 73. MR 0258857
- Carl Pearcy and Allen Shields, Almost commuting matrices, J. Functional Analysis 33 (1979), no. 3, 332–338. MR 549118, DOI 10.1016/0022-1236(79)90071-5
- Peter Rosenthal, Research Problems: Are Almost Commuting Matrices Near Commuting Matrices?, Amer. Math. Monthly 76 (1969), no. 8, 925–926. MR 1535586, DOI 10.2307/2317951
- Dan Voiculescu, Asymptotically commuting finite rank unitary operators without commuting approximants, Acta Sci. Math. (Szeged) 45 (1983), no. 1-4, 429–431. MR 708811
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 529-533
- MSC: Primary 47A55; Secondary 15A27, 47B47
- DOI: https://doi.org/10.1090/S0002-9939-1988-0928973-3
- MathSciNet review: 928973