A generalization to multifunctions of Fan’s best approximation theorem
HTML articles powered by AMS MathViewer
- by V. M. Sehgal and S. P. Singh
- Proc. Amer. Math. Soc. 102 (1988), 534-537
- DOI: https://doi.org/10.1090/S0002-9939-1988-0928974-5
- PDF | Request permission
Abstract:
We prove a theorem for set valued mappings in an approximatively compact, convex subset of a locally convex space, and then derive results due to Ky Fan and S. Reich as corollaries.References
- Ky Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234–240. MR 251603, DOI 10.1007/BF01110225
- C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl. 38 (1972), 205–207. MR 303368, DOI 10.1016/0022-247X(72)90128-X
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578, DOI 10.1007/978-3-662-41914-4
- Tzu Chu Lin, A note on a theorem of Ky Fan, Canad. Math. Bull. 22 (1979), no. 4, 513–515. MR 563767, DOI 10.4153/CMB-1979-067-x
- Simeon Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), no. 1, 104–113. MR 514991, DOI 10.1016/0022-247X(78)90222-6
- V. M. Sehgal and S. P. Singh, A theorem on the minimization of a condensing multifunction and fixed points, J. Math. Anal. Appl. 107 (1985), no. 1, 96–102. MR 786014, DOI 10.1016/0022-247X(85)90355-5
- V. M. Sehgal and S. P. Singh, On random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc. 95 (1985), no. 1, 91–94. MR 796453, DOI 10.1090/S0002-9939-1985-0796453-1
- V. M. Sehgal, A simple proof of a theorem of Ky Fan, Proc. Amer. Math. Soc. 63 (1977), no. 2, 368–369. MR 435954, DOI 10.1090/S0002-9939-1977-0435954-8 C. Waters, Ph.D. thesis, University of Wyoming, 1984.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 534-537
- MSC: Primary 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0928974-5
- MathSciNet review: 928974