SUMMATION METHODS AND UNIQUENESS
IN VILENKIN GROUPS

D. J. GRUBB

(Communicated by Richard R. Goldberg)

ABSTRACT. It is shown that the σ-compact U-sets for two different summation methods on Vilenkin groups are the same.

Let G be a Vilenkin group, i.e. a compact, totally disconnected, abelian, metric group, and let $\{H_n\}_{n=0}^{\infty}$ be a decreasing sequence of clopen subgroups of G forming a neighborhood base at the identity of G. Let Γ be the Pontryagin dual of G and let $K_n = \text{Ann}(\Gamma, H_n)$ be the annihilator of H_n in Γ. Then $\{K_n\}_{n=0}^{\infty}$ is an increasing sequence of finite subgroups of Γ whose union is all of Γ.

Let $A(G)$ be the algebra of absolutely convergent Fourier series, $PM(G)$ the space of pseudomeasures, and $PF(G)$ the space of pseudofunctions, on G. Then $A(G) \simeq l_1(\Gamma)$, $PM(G) \simeq l_\infty(\Gamma)$, and $PF(G) \simeq c_0(\Gamma)$, where the isomorphisms are all written as $S \mapsto \hat{S}$.

If $S \in PM(G)$, we may define the nth partial sum of the Fourier series of type 1 of S at a point x in G by

$$s_n(S,x) = s_n(S)(x) = \langle S, \xi_xH_n \rangle / \lambda(H_n) = \sum_{\gamma \in K_n} \hat{S}(\gamma) \gamma(x),$$

where (S,f) realizes the duality $PM(G) \simeq A(G)^*$ of Banach spaces. This summation method is investigated in [1 and 2].

In [3] Vilenkin showed how to enumerate Γ as $\{\gamma_n\}_{n=0}^{\infty}$ in such a way that for fixed $m \geq 0$, the sequence $\{\gamma_n\}_{n=0}^{\infty}$ fills cosets of K_m successively. Also $\gamma_0 = 1$.

Using this enumeration, we may construct another summation method for trigonometric series. Simply investigate the series

$$\sum_{n=0}^{\infty} \hat{S}(\gamma_n) \gamma_n(x)$$

for $S \in PM(G)$. We call partial sums of this series partial sums of type 2, and this the Fourier series of S of type 2.

We call a subset E of G a set of uniqueness or U-set of type 1 (resp. type 2) if the only Fourier series of type 1 (resp. type 2) of a pseudofunction converging to 0 everywhere except, possibly, on E is the zero series. Notice that pseudofunctions are used in this definition and not pseudomeasures. This is important since otherwise there would be no U-sets of type 1. (See [1] for a discussion.)

Received by the editors December 2, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 43A55; Secondary 42C25.

Key words and phrases. Set of uniqueness, Vilenkin group.
The object of this paper is a demonstration that for σ-compact subsets of G, the U-sets of type 1 are exactly the U-sets of type 2. Because a partial sum of type 1 is a partial sum of type 2 (recall (*) and $\gamma_0 = 1$), a U-set of type 1 is a U-set of type 2, even if not σ-compact. It is also easy to show that the empty set is a U-set of type 1, and it is known that countable unions of closed U-sets of type 1 are again U-sets of type 1. (See [1 and 2].) It is also known that closed U-sets of type 1 are exactly those closed sets which support no pseudofunction in the distributional sense [2]. Thus three different definitions of the concept of a U-set coincide for closed sets.

A key step in our program is the following proposition. For the case when $G = \Pi \mathbb{Z}/(2)$, see [4 and 5].

Theorem 1. Let $S \in PF(G)$ and let xH_m be a basic open set in G. Then the type 1 Fourier series of S converges to 0 on xH_m if and only if the type 2 Fourier series of S converges to 0 on xH_m.

Proof. Since type 1 partial sums are type 2 partial sums, one direction is trivial.

Now assume that $s_n(S, y)$ converges to 0 for every y in xH_m. Let Q be a representative set in Γ for the cosets of K_m, where K_m is the annihilator of H_m. Then for y in H_m and $n \geq m$, write

$$s_n(S, xy) = \sum_{\gamma \in K_n} S(\gamma)(xy) = \sum_{\phi \in Q \cap K_n} \sum_{\eta \in K_m} S(\phi \eta)(\phi \eta)(xy)$$

$$= \sum_{\phi \in Q \cap K_n} \left[\sum_{\eta \in K_m} S(\phi \eta)(\eta)(x) \right] \phi(y).$$

Since the Pontryagin dual of H_m is isomorphic to Γ/K_m, this last sum may be regarded as a partial sum of a type 1 Fourier series on H_m. Since $s_n(S, xy)$ converges to 0 for all $y \in H_m$, and since the empty set is a U-set of type 1 in H_m, we get

$$\sum_{\eta \in K_m} S(\phi \eta)(\eta)(x) = 0 \quad \text{for } \phi \in Q.$$

If $y \in xH_m$, $yH_m = xH_m$, so the above holds with y in place of x. Rewriting gives (1)

$$\sum_{\gamma \in \phi K_m} \hat{S}(\gamma)(\gamma)(y) = 0 \quad \text{for } y \in xH_m \text{ and } \phi \in Q.$$

Now, if $n \geq 0$ is given, then $\{\gamma_0, \ldots, \gamma_n\}$ is a union of cosets of K_m except for a "tail" $\{\gamma_p, \ldots, \gamma_m\}$ lying entirely in one coset of K_m, since the sequence $\{\gamma_j\}_{j=1}^\infty$ fills up cosets of K_m successively. This fact, with (1) shows

$$\left| \sum_{k=0}^n \hat{S}(\gamma_k)(\gamma_k)(y) \right| = \left| \sum_{k=p}^n \hat{S}(\gamma_k)(\gamma_k)(y) \right| \leq (n - p + 1) \sup |\hat{S}(\gamma)|$$

$$\leq \text{card}(K_m) \sup |\hat{S}(\gamma)| \to 0 \quad \text{for } y \in xH_m,$$

where the supremum is over a coset of K_m which goes to infinity in Γ as n goes to infinity. This completes the proof of the proposition.
COROLLARY 2. A \(\sigma \)-compact subset of \(G \) is a \(U \)-set of type 1 if and only if it is a \(U \)-set of type 2.

PROOF. As noted above, any \(U \)-set of type 1 is a \(U \)-set of type 2 automatically. The theorem shows that a closed \(U \)-set of type 2 is a \(U \)-set of type 1. Now, if \(E = \bigcup_{n=0}^{\infty} E_n \) is a \(\sigma \)-compact \(U \)-set of type 2, with each \(E_n \) closed in \(G \), then each \(E_n \) is a \(U \)-set of type 2 and thus of type 1. Since countable unions of \(U \)-sets of type 1 are \(U \)-sets of type 1 (see [1 or 2]), \(E \) is a \(U \)-set of type 1.

BIBLIOGRAPHY

2. , Completeness and uniqueness on compact, 0-dimensional, metric spaces, unpublished.
5. V. A. Skvorcov, Example of a Walsh series with a subsequence of partial sums converging everywhere to 0, Mat. Sb. 97 (1975), 517–539.

DEPARTMENT OF MATHEMATICAL SCIENCES, NORTHERN ILLINOIS UNIVERSITY, DEKALB, ILLINOIS 60115