A short proof of Macdonald’s conjecture for the root systems of type $A$
HTML articles powered by AMS MathViewer
- by John R. Stembridge
- Proc. Amer. Math. Soc. 102 (1988), 777-786
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934842-5
- PDF | Request permission
Abstract:
We give a new proof of I. G. Macdonald’s conjecture for the root systems of type $A$ (or equivalently, the equal parameter $q$-Dyson Theorem) that is short, elementary and direct. We also give a short proof of the equal parameter case of a constant term identity due to D. Bressoud and I. Goulden.References
- George E. Andrews, Problems and prospects for basic hypergeometric functions, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 191–224. MR 0399528
- D. M. Bressoud and I. P. Goulden, Constant term identities extending the $q$-Dyson theorem, Trans. Amer. Math. Soc. 291 (1985), no. 1, 203–228. MR 797055, DOI 10.1090/S0002-9947-1985-0797055-8
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- Laurent Habsieger, Une $q$-conjecture d’Askey, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 17, 615–618 (French, with English summary). MR 845652
- Phil Hanlon, The proof of a limiting case of Macdonald’s root system conjectures, Proc. London Math. Soc. (3) 49 (1984), no. 1, 170–182. MR 743377, DOI 10.1112/plms/s3-49.1.170
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2 K. W. J. Kadell, A proof of Askey’s conjectured $q$-analog of Selberg’s integral and a conjecture of Morris, SIAM J. Math. Anal. (to appear).
- I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal. 13 (1982), no. 6, 988–1007. MR 674768, DOI 10.1137/0513070
- I. G. Macdonald, The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161–174. MR 322069, DOI 10.1007/BF01431421 —, Symmetric functions and Hall polynomials, Oxford, 1979.
- John R. Stembridge, First layer formulas for characters of $\textrm {SL}(n,\textbf {C})$, Trans. Amer. Math. Soc. 299 (1987), no. 1, 319–350. MR 869415, DOI 10.1090/S0002-9947-1987-0869415-X D. Zeilberger, A proof of the ${G_2}$ case of Macdonald’s root system-Dyson conjecture, preprint.
- Doron Zeilberger and David M. Bressoud, A proof of Andrews’ $q$-Dyson conjecture, Discrete Math. 54 (1985), no. 2, 201–224. MR 791661, DOI 10.1016/0012-365X(85)90081-0
- Laurent Habsieger, La $q$-conjecture de Macdonald-Morris pour $G_2$, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 6, 211–213 (French, with English summary). MR 860819
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 777-786
- MSC: Primary 11P57; Secondary 05A17
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934842-5
- MathSciNet review: 934842