Polynomial-rational bijections of $\textbf {R}^ n$
HTML articles powered by AMS MathViewer
- by Krzysztof Kurdyka and Kamil Rusek
- Proc. Amer. Math. Soc. 102 (1988), 804-808
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934846-2
- PDF | Request permission
Abstract:
It is shown in this note that every invertible polynomial transformation of ${{\mathbf {R}}^n}$ of degree two has a rational inverse defined on the whole space ${{\mathbf {R}}^n}$. The same is true for polynomial transformations of higher degrees, satisfying some differential condition which is a real analogue of Jagžev’s condition considered in [3, 4, and 6]. The proofs of these statements are based on the Bialynicki-Birula and Rosenlicht surjectivity theorem [2] and on standard properties of complex dominant polynomial mappings.References
- Hyman Bass, Edwin H. Connell, and David Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287–330. MR 663785, DOI 10.1090/S0273-0979-1982-15032-7
- Andrzej Białynicki-Birula and Maxwell Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200–203. MR 140516, DOI 10.1090/S0002-9939-1962-0140516-5
- Ludwik M. Drużkowski, An effective approach to Keller’s Jacobian conjecture, Math. Ann. 264 (1983), no. 3, 303–313. MR 714105, DOI 10.1007/BF01459126
- A. V. Jagžev, On a problem of O.-H. Keller, Sibirsk. Mat. Zh. 21 (1980), no. 5, 141–150, 191 (Russian). MR 592226
- David Mumford, Algebraic geometry. I, Grundlehren der Mathematischen Wissenschaften, No. 221, Springer-Verlag, Berlin-New York, 1976. Complex projective varieties. MR 0453732
- Ludwik M. Drużkowski, An effective approach to Keller’s Jacobian conjecture, Math. Ann. 264 (1983), no. 3, 303–313. MR 714105, DOI 10.1007/BF01459126
- Robert A. Bonic, Linear functional analysis, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York-London-Paris, 1969. MR 0257686
- Stuart Sui Sheng Wang, A Jacobian criterion for separability, J. Algebra 65 (1980), no. 2, 453–494. MR 585736, DOI 10.1016/0021-8693(80)90233-1
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 804-808
- MSC: Primary 14E05; Secondary 12D05, 14E07
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934846-2
- MathSciNet review: 934846