Filtrations and Noetherian symbolic blow-up rings
HTML articles powered by AMS MathViewer
- by Peter Schenzel
- Proc. Amer. Math. Soc. 102 (1988), 817-822
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934849-8
- PDF | Request permission
Abstract:
For a one-dimensional prime ideal in a local Noetherian ring it is characterized when the symbolic blow-up ring is an algebra of finite type. More generally, for a filtration of ideals of a local Noetherian ring there is a necessary and sufficient condition for the corresponding Rees ring to be a Noetherian ring. Applications concern asymptotic prime divisors and the analytic spread.References
- S. Eliahou, Courbes monomiales et algebre de Rees symbolique, Thèse, Université de Genève, 1983.
- Craig Huneke, On the finite generation of symbolic blow-ups, Math. Z. 179 (1982), no. 4, 465–472. MR 652854, DOI 10.1007/BF01215060
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- M. Nagata, Lectures on the fourteenth problem of Hilbert, Tata Institute of Fundamental Research, Bombay, 1965. MR 0215828
- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145–158. MR 59889, DOI 10.1017/s0305004100029194
- Akira Ooishi, Noetherian property of symbolic Rees algebras, Hiroshima Math. J. 15 (1985), no. 3, 581–584. MR 813574
- D. Rees, On a problem of Zariski, Illinois J. Math. 2 (1958), 145–149. MR 95843
- Paul C. Roberts, A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian, Proc. Amer. Math. Soc. 94 (1985), no. 4, 589–592. MR 792266, DOI 10.1090/S0002-9939-1985-0792266-5
- Peter Schenzel, Finiteness of relative Rees rings and asymptotic prime divisors, Math. Nachr. 129 (1986), 123–148. MR 864628, DOI 10.1002/mana.19861290112
- Peter Schenzel, Examples of Noetherian symbolic blow-up rings, Rev. Roumaine Math. Pures Appl. 33 (1988), no. 4, 375–383. MR 950134
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 817-822
- MSC: Primary 13E05; Secondary 13B99, 13C13
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934849-8
- MathSciNet review: 934849