On the Jacobson radical of some endomorphism rings
HTML articles powered by AMS MathViewer
- by Manfred Dugas
- Proc. Amer. Math. Soc. 102 (1988), 823-826
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934850-4
- PDF | Request permission
Abstract:
In this note we deal with a question raised by R. S. Pierce in 1963: Determine the elements of the Jacobson radical of the endomorphism ring of a primary abelian group by their action on the group. We concentrate on separable abelian $p$-groups and give a counterexample to a conjecture of A. D. Sands. We also show that the radical can be pinned down if the endomorphism ring is a split-extension of its ideal of all small maps.References
- A. L. S. Corner, On endomorphism rings of primary abelian groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 277–296. MR 258949, DOI 10.1093/qmath/20.1.277
- A. L. S. Corner and Rüdiger Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3) 50 (1985), no. 3, 447–479. MR 779399, DOI 10.1112/plms/s3-50.3.447
- Manfred Dugas and Rüdiger Göbel, On endomorphism rings of primary abelian groups, Math. Ann. 261 (1982), no. 3, 359–385. MR 679796, DOI 10.1007/BF01455456 —, Almost $\sum$-cycle abelian $p$-groups, Proc. Udine Conf. on Abelian Groups and Modules, Springer-Verlag, Wien and New York, 1984, pp. 87-106.
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- Jutta Hausen, Quasi-regular ideals of some endomorphism rings, Illinois J. Math. 21 (1977), no. 4, 845–851. MR 468743
- Jutta Hausen and Johnny A. Johnson, Ideals and radicals of some endomorphism rings, Pacific J. Math. 74 (1978), no. 2, 365–372. MR 480615
- Wolfgang Liebert, The Jacobson radical of some endomorphism rings, J. Reine Angew. Math. 262(263) (1973), 166–170. MR 325665, DOI 10.1515/crll.1973.262-263.166
- J. M. Irwin and E. A. Walker (eds.), Topics in Abelian groups, Scott, Foresman & Co., Chicago, Ill., 1963. MR 0168630
- A. D. Sands, On the radical of the endomorphism ring of a primary abelian group, Abelian groups and modules (Udine, 1984) CISM Courses and Lect., vol. 287, Springer, Vienna, 1984, pp. 305–314. MR 789827, DOI 10.1007/978-3-7091-2814-5_{2}2
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 823-826
- MSC: Primary 20K30; Secondary 16A21, 16A65, 20K10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934850-4
- MathSciNet review: 934850