ON THE JACOBSON RADICAL OF SOME ENDOMORPHISM RINGS

MANFRED DUGAS

(Communicated by Bhama Srinivasan)

ABSTRACT. In this note we deal with a question raised by R. S. Pierce in 1963: Determine the elements of the Jacobson radical of the endomorphism ring of a primary abelian group by their action on the group. We concentrate on separable abelian p-groups and give a counterexample to a conjecture of A. D. Sands. We also show that the radical can be pinned down if the endomorphism ring is a split-extension of its ideal of all small maps.

Introduction. All groups in this note are abelian p-groups for some fixed but arbitrary prime p. Our notations are standard as in [F]. It is known that the endomorphism ring End(A) of an abelian p-group A determines the group up to isomorphism. R. Pierce [P] raised the question of describing the Jacobson radical J(End(A)) of End(A) by its action on the group. This problem was solved by W. Liebert [L], J. Hausen [H] and Hausen-Johnson [HJ] for Σ-cyclic, torsion-complete and sufficiently projective p-groups. (For a separable p-group sufficiently projective is the same as ω₁-separable.) If A is a (separable) p-group, let \(H(A) = \{ \varphi \in \text{End}(A) \mid |x| < |x\varphi| \text{ for all } 0 \neq x \in A[p] \} \) be the ideal of all maps acting height increasing on the socle of A, and let \(C(A) \) be the ideal of all elements of \(\text{End}(A) \) mapping each Cauchy sequence in \(A[p] \) onto a convergent one. (For \(x \in A \), \(|x| \) denotes the p-height of \(x \) in \(A \) and topological notations refer to the p-adic topology.) If A is torsion-complete, \(J(\text{End}(A)) = H(A) \), if A is Σ-cyclic or ω₁-separable, \(J(\text{End}(A)) = H(A) \cap C(A) \), and \(H(A) \cap C(A) \subset J(\text{End}(A)) \) for all separable p-groups (cf. [S]). The purpose of this paper is to show that \(J(\text{End}(A)) \) is in general not equal to \(C(A) \cap H(A) \) for separable p-groups A. We will use that \(J(\text{End}(A)) \cap E_s(A) = E_s(A) \cap H(A) \), where \(E_s(A) \) is the ideal of all small endomorphisms of \(A \) (cf. [S]). Recently, many complicated p-groups have been constructed in [DG1, DG2, CG]. All these groups enjoy the property that \(\text{End}(A) \) is a split extension of \(E_s(A) \), i.e. \(\text{End}(A) = R \oplus E_s(A) \) for some subring \(R \) of \(\text{End}(A) \). The way these groups are constructed, \(R \cap H(A) = pR \) and \(\overline{H}_R(A) = \overline{H}_R(A) \), i.e. if \(r \in R - H(A) \), then for all \(n \) there is \(0 \neq x \in p^nA[p] \) such that \(x \) and \(xr \) have the same height. In this situation Theorem 1 below implies

\[
J(\text{End}(A)) = (J(R) \cap H(A)) \oplus (E_s(A) \cap H(A))
\]

and we have \(J(\text{End}(A)) = H(A) \cap C(A) \) for these groups. We will construct a ring \(R \) and use the realization result in [C] to obtain a separable p-group A such that

Received by the editors July 17, 1986 and, in revised form, December 18, 1986.

Key words and phrases. Abelian p-group, endomorphism ring, small endomorphisms, Jacobson radical, height-preserving maps.

©1988 American Mathematical Society
0002-9939/88 $1.00 + $0.25 per page
823

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
End(A) = R ⊕ E_s(A) and (J(R) - pR) ∩ H(A) and (R - J(R)) ∩ H(A) are both not empty. Since C(A) ∩ R = pR for this group A, we have that H(A) ∩ C(A) is a proper subset of J(End(A)). This makes it hard to believe that Pierce's question has a positive answer for all separable p-groups.

The construction. Let A be a separable p-group and E = End(A) the endomorphism ring of A. If S ⊂ E, and U ⊂ A[p] are subsets, define \(\overline{H}_S(A, U) = \{ \varphi \in S \mid \exists x \in U, |x| = |x\varphi| \} \). Observe that \(\overline{H}_E(A, U) \cap S = \overline{H}_S(A, U) \) and if \(U \subset V \) we have \(\overline{H}_S(A, U) \subset \overline{H}_S(A, V) \). We also define \(H(A) = E - \overline{H}_E(A, A[p]) \), \(\overline{H}_S(A) = \bigcap_n \overline{H}_S(A, p^nA[p]) \) and \(\overline{H}_{S}(A) = S \cap H(A) \) and \(H_S(A, U) = S - \overline{H}_S(A, U) \).

Theorem 1. Let A be a separable p-group such that \(E = E(A) = R \oplus E_s(A) \) is a split extension of \(E_s(A) \) and \(\overline{H}_R(A) = \overline{H}_s^*(A) \). Then \(J(E) = H_{J(R)}(A) \oplus H_{E_s}(A) \).

Proof. Let \(r \in R \), and \(\sigma \in E_s(A) \) with \(r + \sigma \in J(E) \). Then \((r + \sigma)t \) is right quasi-regular for all \(t \in R \) and, since \(E = R \oplus E_s(A) \), the element \(rt \) is right quasi-regular in \(R \) as well as \(r \in J(R) \). Now suppose \(r \notin H_{J(R)}(A) \). Since \(\sigma \) is small and \(\overline{H}_R(A) = \overline{H}_s^*(A) \), we find \(n < \omega \) and \(0 \neq x \in p^nA[p] \) such that \(x\sigma = 0 \) and \(|x| = |x\sigma| \). Let \(F \) be a finite summand of \(A \) containing \(x\sigma \) and let \(\rho: A \to F \) be the natural projection. Then \(x\sigma = x\rho \) and \(|x\sigma| = |x\rho| = |x(r + \sigma)p| \). Since \(Ap = F \) is finite, \(\rho \in E_s(A) \) and hence \((r + \sigma)\rho \in J(E) \cap E_s(A) = E_s(A) \cap H(A) \) (cf. [S]). This contradicts the above equation of heights and we conclude \(r \in H_{J(R)}(A) \). Now let \(t \in R \), \(\sigma \in E_s(A) \) and \(r \in H_{J(R)}(A) \). Then there is \(s \in R \) such that \((1 - rt)s = 1 \). This implies \((1 - (r + \sigma)s) = (1 - rt)s - \sigma s = 1 - \sigma s \). Since \(\sigma \in E_s(A) \) and \(r \in H_{J(R)}(A) \) we have that \(\sigma s \in H_{E_s}(A) \subset J(E) \) and there is \(r \in E \) with \((1 - \sigma s)r = 1 \). This implies \((1 - (r + \sigma))s = 1 \) and \(r \in J(E) \). We obtain \(H_{J(R)}(A) \subset J(E) \subset H_{J(R)}(A) \) which together with \(J(E) \cap E_s(A) = H_{E_s}(A) \) implies the desired equation.

We now construct our ring:

Let \(\omega \) be the set of natural numbers including 0 and let

\[
B = \bigoplus_{i \in \omega} (f_i \oplus g_i \oplus h_i)
\]

be a \(\Sigma \)-cyclic p-group with \(\exp(f_i) = i + 1 = \exp(g_i) \) and \(\exp(h_i) = i + 2 \). We define elements \(\alpha, \beta, \gamma \in \text{End}(B) \) by setting \(f_i \alpha = p f_{i+1}, f_i \beta = g_i \) and \(f_i \gamma = ph_i \), and \(\alpha, \beta \) and \(\gamma \) are 0 on the \(g_i \)'s and \(f_i \)'s. Let \(S = \{ 1, \alpha, \beta, \gamma \} \) be the subring of \(\text{End}(B) \) generated by these elements and \(R = \tilde{S} \) be the p-adic completion of \(S \). We have the following relations:

1. \(\beta \gamma = \gamma \alpha = \beta^2 = \gamma^2 = \beta \gamma = \gamma \beta = 0 \).
2. Each element \(r \in S \) has a unique representation:

\[
r = \sum_{i=0}^{n} \alpha^i a_i + \sum_{i=0}^{m} \alpha^i b_i + \sum_{i=0}^{k} \alpha^i c_i
\]

with \(a_i, b_i \) and \(c_i \) integers.

Therefore each element \(x \in R = \tilde{S} \) has a unique representation:

3. \(x = \sum_{i=0}^{\infty} \alpha^i a_i + \sum_{i=0}^{\infty} \alpha^i b_i + \sum_{i=0}^{\infty} \alpha^i c_i \) where \(\{ a_i \}, \{ b_i \} \) and \(\{ c_i \} \) are p-adic zero-sequences in \(J \), the ring of p-adic integers. Let \(I \) be the set of all \(x \in R \) with all \(a_i \)'s being 0. This is the ideal of \(R \) generated by \(\beta \) and \(\gamma \). An easy computation shows:
(4) Let $x \in R$ be as in (3). Then $\exp(f_kx) = \max_{i \in \omega}\{k + 1 - |a_i|, k + 1 - |b_i|, k + 1 - |c_i|\}$. Here the max is defined to be 0 if all numbers in the set are < 0.
Because of (3), $\{a^i \mid i < \omega\}$ is linearly independent and we have

(5) $R/I \cong \left(J_p[\alpha]\right)^{-},$ the p-adic completion of the polynomial ring $J_p[\alpha]$.
This implies

(6) $R/(pR + I) \cong GF(p)[\alpha],$ the polynomial ring over $GF(p)$.
This implies $pR \subset J(R) \subset pR + I$.

(7) Let $j < k + 1$. Then $|p^j f_kx| > j = |p^j f_k|$ for all $x \in I$, the ideal generated by β and γ, i.e. $I \subset H(\overline{B})$.
This follows from a straightforward computation using that B is Σ-cyclic. Observe that $I^2 = 0$.

(8) $J(R) = pR + I$.
We want R to be pure in $E(\overline{B}), \overline{B}$ the torsion-completion of B. We show a little more:

(9) $R \oplus E_s(\overline{B})$ is pure in $E(\overline{B})$. (One needs this to do a “Black Box” construction; cf. [CG].)

To prove (9), let $\varphi \in E(\overline{B}), \tau \in R, \sigma \in E_s(\overline{B})$ and $n \in \omega$ with $p^n\varphi = r + \sigma$. Since σ is small, there is $k \in \omega$ such that $p^{k-n-1}f_k p^n \varphi = p^{k-n-1} f_k r$ and $p^2 p^{k-1} f_k \varphi = 0$. Hence $p^{k-n+1} f_k r = 0$. Now let τ be represented as in (3) and apply (4) to obtain:

$$k - n + 1 > \exp(f_k \tau) = \max_{i \in \omega}\{k + 1 - |a_i|, k + 1 - |b_i|, k + 1 - |c_i|\}.$$

This implies $k - n + 1 \geq k + 1 - |a_i|$ and $|a_i| \geq n$. The same holds for the b_i's and c_i's. Therefore $\tau \in p^n R$ and $\tau = p^n s$ for some $s \in R$. Thus $p^n(\varphi - s) = \sigma$ is small which implies $\varphi - s$ is small and $\varphi \in R \oplus E_s(A)$. \(\square\)

(10) Let A be a pure subgroup of \overline{B} containing B and $\varphi \in H_E(A)(A, B[p])$. Then $\varphi \in H_{E_s}(A)(A, A[p])$.

Let $a \in A[p] - B[p]$. Since A/B is divisible, there is $b \in B, y \in A$ such that $a = b + p^{n+1} y$ where $n = |a|$. Then $|a| = |b|$ and $|a \varphi| = |(b + p^{n+1} y) \varphi| \geq n + 1 > n = |a|$ since $\varphi \in H_E(A)(A, B[p])$. This inequality shows $\varphi \in H_{E_s}(A)(A, A[p])$. \(\square\)

Now we apply A. L. S. Corner's result [C, Theorem 2.1] and obtain a pure subgroup A of \overline{B} containing B and $\text{End}(A) = R \oplus E_s(A)$. (Observe that (4) implies that condition (C) of [C, Theorem 2.1] holds.) The ring R is constructed to satisfy $H_R(A) = pR + \alpha R + R\gamma$. Moreover we have $\alpha \in h_R(A) - J(R), \beta \in J(R) - H_R(A)$ and $\gamma \in J_R(A) - pR$. Observe that $\gamma \not\in C(A)$, since otherwise $B[p] \gamma \subset A$.
In order to see that this is absurd, we have to look into Corner's proof [C] of his Theorem 2.1: Recall that for a positive integer e an element $x \in \overline{B}$ is e-strong if $xr = 0$ implies $r \in p^e R$ for $x \in B[p]$. Moreover for $e = 1, x \in B[p]$ and since $\gamma \not\in pR$ we conclude $x\gamma \neq 0$. This shows that $B[p] \gamma$ is not contained in any $G_\sigma (= A)$. Now Theorem 1 applies and we have that $J(End(A)) = H_J(R)(A) \oplus H_{E_s}(A)(A)$ is not contained in $C(A) \cap H(A)$ since γ is not and also $H_R(A)$ is not contained in $J(R)$. So if we want to describe the elements of $J(End(A))$ by their action on A, we have to find the elements in $J(R) \cap H(A)$, which means we must be able to recognize the elements of $J(R)$. There is much freedom for the way an element of $J(R)$ can operate on A. We answer a question...
MANFRED DUGAS

in [S] by summarizing part of our discussion in

THEOREM 2. There exists a separable p-group A such that $J(\text{End}(A))$ is larger than $H(A) \cap C(A)$.

REMARK. If we want to have larger groups A realizing R, we may employ Shelah's "Black Box" and a construction very similar to the one in [CG]. We would like to mention again that all the p-groups constructed in [CG, DG1 or DG2] satisfy $H(A) \cap J(R) = pR$.

REFERENCES

DEPARTMENT OF MATHEMATICS, BAYLOR UNIVERSITY, WACO, TEXAS 76798