A new proof of McKenna’s theorem
HTML articles powered by AMS MathViewer
- by Guang Xin Zeng
- Proc. Amer. Math. Soc. 102 (1988), 827-830
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934851-6
- PDF | Request permission
Abstract:
Using a new and simpler method, the following result is shown: Let $(K,C)$ be a formally real field with core $C$ which has only a finite number of orderings. Then $(K,C)$ has the Weak Hilbert Property if and only if $K$ is dense in every real closure of $(K,C)$. This result contains the main theorem of McKenna in [1]References
- Kenneth McKenna, New facts about Hilbert’s seventeenth problem, Model theory and algebra (A memorial tribute to Abraham Robinson), Lecture Notes in Math., Vol. 498, Springer, Berlin, 1975, pp. 220–230. MR 0401720
- T. Y. Lam, The theory of ordered fields, Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979) Lecture Notes in Pure and Appl. Math., vol. 55, Dekker, New York, 1980, pp. 1–152. MR 584611 A. Prestel, Lectures on formally real fields, IMPA Lecture Notes, No. 22, Rio de Janeiro.
- Alexander Prestel, Sums of squares over fields, Proceedings of the 5th School of Algebra (Rio de Janeiro, 1978) Soc. Brasil. Mat., Rio de Janeiro, 1978, pp. 33–44. MR 572053
- Abraham Robinson, On ordered fields and definite functions, Math. Ann. 130 (1955), 275–271. MR 75932, DOI 10.1007/BF01343896
- Nathan Jacobson, Basic algebra. I, W. H. Freeman and Co., San Francisco, Calif., 1974. MR 0356989
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 827-830
- MSC: Primary 12D15
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934851-6
- MathSciNet review: 934851