$L_ p$-continuity of positive semigroups on finite von Neumann algebras
HTML articles powered by AMS MathViewer
- by Seiji Watanabe
- Proc. Amer. Math. Soc. 102 (1988), 840-842
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934853-X
- PDF | Request permission
Abstract:
Let $M$ be a $\sigma$-finite, finite von Neumann algebra with a faithful normal tracial state $\tau$. Let $\alpha$ be a one-parameter semigroup of normal positive contractions of $M$. Then it is shown that $\alpha$ is continuous with respect to the ${L_p}$-norm $(1 \leq p < \infty )$ induced by $\tau$ if and only if it is $\sigma$-weakly continuous.References
- J. Dixmier, Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France 81 (1953), 9–39 (French). MR 59485, DOI 10.24033/bsmf.1436
- George A. Elliott, Convergence of automorphisms in certain $C^{\ast }$-algebras, J. Functional Analysis 11 (1972), 204–206. MR 0350434, DOI 10.1016/0022-1236(72)90089-4 R. Emilion, Semi-groups in ${L_\infty }$ and local ergodic theorem, Canad. Math. Bull. 29 (1986), 146-153. U. Groh, Positive semi-groups on ${C^*}$- and ${W^*}$-algebras, Lecture Notes in Math., vol. 1184, Springer-Verlag, Berlin and New York, 1986, pp. 369-425.
- Robert R. Kallman, Unitary groups and automorphisms of operator algebras, Amer. J. Math. 91 (1969), 785–806. MR 254617, DOI 10.2307/2373352
- Robert R. Kallman, One-parameter groups of $^{\ast }$-automorphisms of $II_{1}$ von Neumann algebras, Proc. Amer. Math. Soc. 24 (1970), 336–340. MR 251548, DOI 10.1090/S0002-9939-1970-0251548-5
- Akitaka Kishimoto and Derek W. Robinson, Subordinate semigroups and order properties, J. Austral. Math. Soc. Ser. A 31 (1981), no. 1, 59–76. MR 622813, DOI 10.1017/S1446788700018486
- Akitaka Kishimoto and Derek W. Robinson, On unbounded derivations commuting with a compact group of $^{\ast }$-automorphisms, Publ. Res. Inst. Math. Sci. 18 (1982), no. 3, 1121–1136. MR 688948, DOI 10.2977/prims/1195183299
- I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401–457. MR 54864, DOI 10.2307/1969729
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 840-842
- MSC: Primary 46L10; Secondary 46L40, 47D05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934853-X
- MathSciNet review: 934853