Some properties of measures of noncompactness in paranormed spaces
HTML articles powered by AMS MathViewer
- by Olga Hadžić
- Proc. Amer. Math. Soc. 102 (1988), 843-849
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934854-1
- PDF | Request permission
Abstract:
This paper presents new properties of important measures of noncompactness in paranormed spaces. Using these properties some fixed point theorems for multivalued mappings in general topological vector spaces are obtained in a straightforward way.References
- Josef Daneš, Some fixed point theorems, Comment. Math. Univ. Carolinae 9 (1968), 223–235. MR 235435
- Ky. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121–126. MR 47317, DOI 10.1073/pnas.38.2.121
- Olga Hadžić, Some fixed point and almost fixed point theorems for multivalued mappings in topological vector spaces, Nonlinear Anal. 5 (1981), no. 9, 1009–1019. MR 633015, DOI 10.1016/0362-546X(81)90060-2
- Olga Hadžić, On equilibrium point in topological vector spaces, Comment. Math. Univ. Carolin. 23 (1982), no. 4, 727–738. MR 687567
- Olga Hadžić, Fixed point theorems for multivalued mappings in not necessarily locally convex topological vector spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 14 (1984), no. 2, 27–40 (English, with Serbo-Croatian summary). MR 850239
- Olga Hadžić, Fixed point theory in topological vector spaces, Univerzitet u Novom Sadu, Institut za Matematiku, Novi Sad, 1984. MR 789224
- Siegfried Hahn, A fixed point theorem for multivalued condensing mappings in general topological vector spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 15 (1985), no. 1, 97–106 (English, with Serbo-Croatian summary). MR 849757 —, Fixpunktsätze für limeskompatke mengenwertige Abbildungen in nicht notwending lokalkonvexen topologischen Vektorräumen, Comment. Math. Univ. Carolin. (to appear). C. J. Himmelberg, J. R. Porter, and F. S. Van Vleck, Fixed point theorems for condensing multifunctions, J. Math. Anal. Appl. 38 (1972), 205-207. T. Jerofsky, Zur Fixpunkttheorie mengenwertiger Abbildungen, Diss. A, Tech. Univ. Dresden, 1983.
- Victor Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286–296. MR 131150, DOI 10.1007/BF01360763 C. Krauthausen, Der Fixpunktsatz von Schauder in nicht notwendig konvexen Räumen sowie Anwendungen auf Hammerstein’sche Gleichungen, Diss., Aachen, 1976.
- A. J. B. Potter, An elementary version of the Leray-Schauder theorem, J. London Math. Soc. (2) 5 (1972), 414–416. MR 312342, DOI 10.1112/jlms/s2-5.3.414 T. Reidrich, Die Räume ${L^p}(0,1)(0 < p < 1)$ sind zulässig, Wiss. Z. Tech. Univ. Dresden 12 (1963), 1149-1152. —, Der Raum $S(0,1)$ ist zulässig, Wiss. Z. Tech. Univ. Dresden 13 (1964), 1-6.
- Rainald Schöneberg, Leray-Schauder principles for condensing multivalued mappings in topological linear spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 268–270. MR 507320, DOI 10.1090/S0002-9939-1978-0507320-9
- C. H. Su and V. M. Sehgal, Some fixed point theorems for condensing multifunctions in locally convex spaces, Proc. Amer. Math. Soc. 50 (1975), 150–154. MR 380530, DOI 10.1090/S0002-9939-1975-0380530-7
- E. Tarafdar and R. Výborný, Fixed point theorems for condensing multivalued mappings on a locally convex topological space, Bull. Austral. Math. Soc. 12 (1975), 161–170. MR 383167, DOI 10.1017/S0004972700023789
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 843-849
- MSC: Primary 47H10; Secondary 47H09
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934854-1
- MathSciNet review: 934854