A decomposition of bounded scalarly measurable functions taking their ranges in dual Banach spaces
HTML articles powered by AMS MathViewer
- by Elizabeth M. Bator
- Proc. Amer. Math. Soc. 102 (1988), 850-854
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934855-3
- PDF | Request permission
Abstract:
A decomposition of scalarly measurable functions taking their range in the dual of a Banach space into a Pettis integrable part and a weak* scalarly null part is introduced and analyzed.References
- Elizabeth M. Bator, Pettis integrability and the equality of the norms of the weak$^\ast$ integral and the Dunford integral, Proc. Amer. Math. Soc. 95 (1985), no. 2, 265–270. MR 801336, DOI 10.1090/S0002-9939-1985-0801336-4
- Elizabeth M. Bator, Paul Lewis, and David Race, Some connections between Pettis integration and operator theory, Rocky Mountain J. Math. 17 (1987), no. 4, 683–695. MR 923739, DOI 10.1216/RMJ-1987-17-4-683
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964 N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- Robert F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), no. 1, 81–86. MR 603606, DOI 10.1090/S0002-9939-1981-0603606-8
- Robert F. Geitz, Geometry and the Pettis integral, Trans. Amer. Math. Soc. 269 (1982), no. 2, 535–548. MR 637707, DOI 10.1090/S0002-9947-1982-0637707-0
- Liliana Janicka, Some measure-theoretical characterization of Banach spaces not containing $l_{1}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 7-8, 561–565 (1980) (English, with Russian summary). MR 581552
- Kazimierz Musiał, The weak Radon-Nikodým property in Banach spaces, Studia Math. 64 (1979), no. 2, 151–173. MR 537118, DOI 10.4064/sm-64-2-151-174
- B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277–304. MR 1501970, DOI 10.1090/S0002-9947-1938-1501970-8
- Lawrence H. Riddle and Elias Saab, On functions that are universally Pettis integrable, Illinois J. Math. 29 (1985), no. 3, 509–531. MR 786735
- Lawrence H. Riddle, Elias Saab, and J. J. Uhl Jr., Sets with the weak Radon-Nikodým property in dual Banach spaces, Indiana Univ. Math. J. 32 (1983), no. 4, 527–541. MR 703283, DOI 10.1512/iumj.1983.32.32038
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411
- Michel Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224. MR 756174, DOI 10.1090/memo/0307
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 850-854
- MSC: Primary 46G10; Secondary 28B05, 46B22
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934855-3
- MathSciNet review: 934855