On almost periodic solutions of the competing species problems
HTML articles powered by AMS MathViewer
- by Shair Ahmad
- Proc. Amer. Math. Soc. 102 (1988), 855-861
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934856-5
- PDF | Request permission
Abstract:
This paper considers the two-dimensional Volterra-Lotka competition equations which are almost periodic in time. Conditions for the existence of an asymptotically stable almost periodic solution with positive components are given.References
- Shair Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations, J. Math. Anal. Appl. 127 (1987), no. 2, 377–387. MR 915064, DOI 10.1016/0022-247X(87)90116-8
- Carlos Alvarez and Alan C. Lazer, An application of topological degree to the periodic competing species problem, J. Austral. Math. Soc. Ser. B 28 (1986), no. 2, 202–219. MR 862570, DOI 10.1017/S0334270000005300 L. Amerio, Soluzioni quasiperiodiche, o limite di sistemi differenziali quasiperiodici o limitati, Ann. Mat. Pura Appl. 34 (1955), 97-116. A. S. Besicovitch, Almost periodic functions, Cambridge Univ. Press, 1932.
- K. Gopalsamy, Global asymptotic stability in an almost-periodic Lotka-Volterra system, J. Austral. Math. Soc. Ser. B 27 (1986), no. 3, 346–360. MR 814407, DOI 10.1017/S0334270000004975
- Robert J. Sacker and George R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc. 11 (1977), no. 190, iv+67. MR 448325, DOI 10.1090/memo/0190
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 855-861
- MSC: Primary 92A17; Secondary 34C27
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934856-5
- MathSciNet review: 934856