On the modulus of weakly compact operators and strongly additive vector measures
HTML articles powered by AMS MathViewer
- by Klaus D. Schmidt
- Proc. Amer. Math. Soc. 102 (1988), 862-866
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934857-7
- PDF | Request permission
Abstract:
Aliprantis and Burkinshaw proved that each weakly compact operator from an AL-space into a KB-space has a weakly compact modulus. In the present paper it is shown that this is also true for weakly compact operators from a Banach lattice having an order continuous dual norm into an order complete AM-space with unit. A corresponding result is obtained for strongly additive vector measures.References
- C. D. Aliprantis and O. Burkinshaw, On weakly compact operators on Banach lattices, Proc. Amer. Math. Soc. 83 (1981), no. 3, 573–578. MR 627695, DOI 10.1090/S0002-9939-1981-0627695-X
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039
- Klaus D. Schmidt, On the Jordan decomposition for vector measures, Probability in Banach spaces, IV (Oberwolfach, 1982) Lecture Notes in Math., vol. 990, Springer, Berlin-New York, 1983, pp. 198–203. MR 707518
- Klaus D. Schmidt, Decompositions of vector measures in Riesz spaces and Banach lattices, Proc. Edinburgh Math. Soc. (2) 29 (1986), no. 1, 23–39. MR 829177, DOI 10.1017/S0013091500017375
- Anthony W. Wickstead, Extremal structure of cones of operators, Quart. J. Math. Oxford Ser. (2) 32 (1981), no. 126, 239–253. MR 615198, DOI 10.1093/qmath/32.2.239
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 862-866
- MSC: Primary 47B55; Secondary 28B15, 46G10, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934857-7
- MathSciNet review: 934857