Weighted capacity and the Choquet integral
HTML articles powered by AMS MathViewer
- by David R. Adams
- Proc. Amer. Math. Soc. 102 (1988), 879-887
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934860-7
- PDF | Request permission
Abstract:
The capacity set function that is naturally associated with a linear second-order elliptic partial differential operator in divergence form is related to the concept of the Choquet integral of a weight function with respect to Newtonian capacity. The weight function comes from the coefficients of the differential operator. This idea is reminiscent of the Radon-Nikodym Theorem, but now for capacities instead of measures.References
- David R. Adams, Maximal operators and capacity, Proc. Amer. Math. Soc. 34 (1972), 152–156. MR 350314, DOI 10.1090/S0002-9939-1972-0350314-1
- David R. Adams, Sets and functions of finite $L^{p}$-capacity, Indiana Univ. Math. J. 27 (1978), no. 4, 611–627. MR 486575, DOI 10.1512/iumj.1978.27.27040 —, A note on differentiation with respect to ${L^p}$-capacity, preprint, Univ. of Kentucky, 1978, 8 pp. —, Lectures on ${L^p}$-potential theory, UmeåUniv. Reports, No. 2, 1981.
- David R. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc. 297 (1986), no. 1, 73–94. MR 849468, DOI 10.1090/S0002-9947-1986-0849468-4
- Bernd Anger, Representation of capacities, Math. Ann. 229 (1977), no. 3, 245–258. MR 466588, DOI 10.1007/BF01391470
- Thomas Bagby and William P. Ziemer, Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974), 129–148. MR 344390, DOI 10.1090/S0002-9947-1974-0344390-6
- Gustave Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953/54), 131–295 (1955). MR 80760
- Gustave Choquet, Ensembles ${\cal K}$-analytiques et ${\cal K}$-sousliniens. Cas général et cas métrique, Ann. Inst. Fourier (Grenoble) 9 (1959), 75–81 (French). MR 112843
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- D. E. Edmunds and L. A. Peletier, A Harnack inequality for weak solutions of degenerate quasilinear elliptic equations, J. London Math. Soc. (2) 5 (1972), 21–31. MR 298217, DOI 10.1112/jlms/s2-5.1.21
- Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116. MR 643158, DOI 10.1080/03605308208820218
- E. Fabes, D. Jerison, and C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, vi, 151–182 (English, with French summary). MR 688024
- Kurt Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), no. 1, 77–102. MR 567435, DOI 10.7146/math.scand.a-11827
- Lars Inge Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505–510. MR 312232, DOI 10.1090/S0002-9939-1972-0312232-4
- W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 43–77. MR 161019
- Norman G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255–292 (1971). MR 277741, DOI 10.7146/math.scand.a-10981
- M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate-elliptic operators, Ann. Mat. Pura Appl. (4) 80 (1968), 1–122 (English, with Italian summary). MR 249828, DOI 10.1007/BF02413623
- Guido Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 1, 189–258 (French). MR 192177
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 879-887
- MSC: Primary 31B15; Secondary 35J99
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934860-7
- MathSciNet review: 934860