Operator theoretic characterizations of $[IN]$-groups and inner amenability
HTML articles powered by AMS MathViewer
- by Anthony To Ming Lau and Alan L. T. Paterson
- Proc. Amer. Math. Soc. 102 (1988), 893-897
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934862-0
- PDF | Request permission
Abstract:
Let $G$ be a locally compact group and $p \in [1,\infty ]$. Let ${\pi _p}$ be the isometric representation of $G$ on ${L_p}(G)$ given by ${\pi _p}(x)f(t) = f({x^{ - 1}}tx)\Delta {(x)^{1/p}}$. Let ${\mathcal {A}’_p}$ be the commutant of ${\mathcal {A}_p}$ in $B({L_p}(G))$. In this paper we determine those $G$ for which: (*) ${\mathcal {A}’_p}$ contains a nonzero compact operator. We prove, among other things, that if $p \in [1,\infty )$, then (*) holds if and only if $G \in [IN]$, and that if $p = \infty$, then (*) holds if and only if $G$ is inner amenable.References
- R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR 0263963
- Hisashi Choda and Marie Choda, Fullness, simplicity and inner amenability, Math. Japon. 24 (1979/80), no. 2, 235–246. MR 550002
- Marie Choda, The factors of inner amenable groups, Math. Japon. 24 (1979/80), no. 1, 145–152. MR 539400
- Marie Choda, Effect of inner amenability on strong ergodicity, Math. Japon. 28 (1983), no. 1, 109–115. MR 692558
- Ching Chou, Anthony To Ming Lau, and Joseph Rosenblatt, Approximation of compact operators by sums of translations, Illinois J. Math. 29 (1985), no. 2, 340–350. MR 784527
- Mahlon M. Day, Semigroups and amenability, Semigroups (Proc. Sympos., Wayne State Univ., Detroit, Mich., 1968) Academic Press, New York, 1969, pp. 5–53. MR 0265502
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- Edward G. Effros, Property $\Gamma$ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483–486. MR 355626, DOI 10.1090/S0002-9939-1975-0355626-6
- Frederick P. Greenleaf, Ergodic theorems and the construction of summing sequences in amenable locally compact groups, Comm. Pure Appl. Math. 26 (1973), 29–46. MR 338260, DOI 10.1002/cpa.3160260103 E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin and New York, 1963. —, Abstract harmonic analysis. II, Springer-Verlag, Berlin and New York, 1970. G. Köthe, Topological vector spaces. I, Springer-Verlag, Berlin and New York, 1969.
- Anthony To Ming Lau, Closed convex invariant subsets of $L_{p}(G)$, Trans. Amer. Math. Soc. 232 (1977), 131–142. MR 477604, DOI 10.1090/S0002-9947-1977-0477604-5
- V. Losert and H. Rindler, Asymptotically central functions and invariant extensions of Dirac measure, Probability measures on groups, VII (Oberwolfach, 1983) Lecture Notes in Math., vol. 1064, Springer, Berlin, 1984, pp. 368–378. MR 772419, DOI 10.1007/BFb0073651
- V. Losert and H. Rindler, Conjugation-invariant means, Colloq. Math. 51 (1987), 221–225. MR 891290, DOI 10.4064/cm-51-1-221-225
- Richard D. Mosak, Central functions in group algebras, Proc. Amer. Math. Soc. 29 (1971), 613–616. MR 279602, DOI 10.1090/S0002-9939-1971-0279602-3
- T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), no. 4, 683–741. MR 513952, DOI 10.1216/RMJ-1978-8-4-683
- William L. Paschke, Inner amenability and conjugation operators, Proc. Amer. Math. Soc. 71 (1978), no. 1, 117–118. MR 473849, DOI 10.1090/S0002-9939-1978-0473849-5 J.-P. Pier, Quasi-invariance intérieure sur les groupes localement compacts, G.M.E.L. Actualités Mathématiques, Actes du 6$^{e}$ Congrès du Groupement des Mathematicians d’ Expression Latine, Luxembourg, 1982, pp. 431-436.
- Shôichirô Sakai, Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964), 659–664. MR 163185, DOI 10.2140/pjm.1964.14.659 —, ${C^ * }$-algebras and ${W^ * }$-algebras, Springer-Verlag, Berlin and New York, 1971.
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039, DOI 10.1007/978-3-642-65970-6 C. K. Yuan, The existence of inner invariant means on ${L^\infty }\left ( G \right )$, J. Math. Anal. Appl. (to appear).
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 893-897
- MSC: Primary 43A15; Secondary 22D25, 43A07, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934862-0
- MathSciNet review: 934862