Short proofs of three theorems on harmonic functions
HTML articles powered by AMS MathViewer
- by H. P. Boas and R. P. Boas
- Proc. Amer. Math. Soc. 102 (1988), 906-908
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934865-6
- PDF | Request permission
Abstract:
We present elementary proofs—shorter than any others that we know—for three related theorems.References
- N. G. Chebotarev and N. N. Meĭman, The Routh-Hurwitz problem for polynomials and entire functions, Trudy Mat. Inst. Steklov. 26 (1949). (Russian)
- Alexander Dinghas, Über positive harmonische Funktionen in einem Halbraum, Math. Z. 46 (1940), 559–570 (German). MR 3334, DOI 10.1007/BF01181454
- Ü. Kuran, Harmonic majorizations in half-balls and half-spaces, Proc. London Math. Soc. (3) 21 (1970), 614–636. MR 315148, DOI 10.1112/plms/s3-21.4.614
- L. H. Loomis and D. V. Widder, The Poisson integral representation of functions which are positive and harmonic in a half-plane, Duke Math. J. 9 (1942), 643–645. MR 7200
- M. Tideman, Elementary proof of a uniqueness theorem for positive harmonic functions, Nordisk Mat. Tidskr. 2 (1954), 95–96. MR 63497
- Nikolaj Tschebotareff, Über die Realität von Nullstellen ganzer transzendenter Funktionen, Math. Ann. 99 (1928), no. 1, 660–686 (German). MR 1512472, DOI 10.1007/BF01459119
- Masatsugu Tsuji, On a positive harmonic function in a half-plane, J. Math. Soc. Japan 7 (1955), 76–78. MR 68047, DOI 10.2969/jmsj/00710076
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 906-908
- MSC: Primary 31B05; Secondary 30D30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934865-6
- MathSciNet review: 934865