Characterization of Schwartz spaces by their holomorphic duals
HTML articles powered by AMS MathViewer
- by Sten Bjon and Mikael Lindström
- Proc. Amer. Math. Soc. 102 (1988), 909-913
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934866-8
- PDF | Request permission
Abstract:
Let $U$ be an open subset of a locally convex space $E$, and let ${H_c}(U,F)$ denote the vector space of holomorphic functions into a locally convex space $F$, endowed with continuous convergence. It is shown that if $F$ is a semi-Montel space, then the bounded subsets of ${H_c}(U,F)$ are relatively compact. Further it is shown that $E$ is a Schwartz space iff the continuous convergence structure on the algebra $H(U)$ of scalar-valued holomorphic functions on $U$, coincides with local uniform convergence. Using this, an example of a nuclear Fréchet space $E$ is given, such that the locally convex topology associated with continuous convergence on $H(E)$ is strictly finer than the compact open topology. Thus, the behavior of the space ${H_c}(E)$ differs in this respect from that of its subspace ${L_c}E$ of linear forms and that of its superspace ${C_c}(E)$ of continuous functions.References
- Ernst Binz, Continuous convergence on $C(X)$, Lecture Notes in Mathematics, Vol. 469, Springer-Verlag, Berlin-New York, 1975. MR 0461418
- Sten Bjon, Einbettbarkeit in den Bidualraum und Darstellbarkeit als projektiver Limes in Kategorien von LimesvektorrĂ€umen, Math. Nachr. 93 (1979), 103â116 (German). MR 579845, DOI 10.1002/mana.19790930108
- Sten Bjon, On an exponential law for spaces of holomorphic mappings, Math. Nachr. 131 (1987), 201â204. MR 908811, DOI 10.1002/mana.19871310118
- S. Bjon and M. Lindström, A general approach to infinite-dimensional holomorphy, Monatsh. Math. 101 (1986), no. 1, 11â26. MR 830607, DOI 10.1007/BF01326843
- S. Bjon and M. Lindström, On a bornological structure in infinite-dimensional holomorphy, Math. Nachr. 139 (1988), 77â86. MR 978109, DOI 10.1002/mana.19881390108
- C. H. Cook and H. R. Fischer, On equicontinuity and continuous convergence, Math. Ann. 159 (1965), 94â104. MR 179752, DOI 10.1007/BF01360283
- SeĂĄn Dineen, Complex analysis in locally convex spaces, Notas de MatemĂĄtica [Mathematical Notes], vol. 83, North-Holland Publishing Co., Amsterdam-New York, 1981. MR 640093
- A. Frölicher and W. Bucher, Calculus in vector spaces without norm, Lecture Notes in Mathematics, No. 30, Springer-Verlag, Berlin-New York, 1966. MR 0213869
- Werner GĂ€hler, Grundstrukturen der Analysis. Band I, LehrbĂŒcher und Monographien aus dem Gebiete der Exakten Wissenschaften (LMW). Mathematische Reihe [Textbooks and Monographs in the Exact Sciences. Mathematical Series], vol. 58, BirkhĂ€user Verlag, Basel-Boston, Mass., 1977 (German). MR 0459969
- Hans Jarchow, Locally convex spaces, Mathematische LeitfÀden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1981. MR 632257
- Hans Jarchow, Duale Charakterisierungen der Schwartz-RĂ€ume, Math. Ann. 196 (1972), 85â90 (German). MR 305008, DOI 10.1007/BF01419433
- Mikael Lindström, On Schwartz convergence vector spaces, Math. Nachr. 117 (1984), 37â49. MR 755290, DOI 10.1002/mana.3211170103
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 909-913
- MSC: Primary 46G20; Secondary 46A12
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934866-8
- MathSciNet review: 934866