Convolution operators on groups and multiplier theorems for Hermite and Laguerre expansions
HTML articles powered by AMS MathViewer
- by Jolanta Długosz
- Proc. Amer. Math. Soc. 102 (1988), 919-924
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934868-1
- PDF | Request permission
Abstract:
Using harmonic analysis on nilpotent Lie groups the following theorem is proved. Let a sequence $\{ {a_{\text {n}}}\}$ be defined by a function $K \in {C^N}({{\mathbf {R}}_ + })$ such that ${\sup _{\lambda > 0}}|{K^{(j)}}(\lambda ){\lambda ^j}| < \infty ,j = 0,1, \ldots ,N$, for $N$ sufficiently large, putting ${a_{\text {n}}} = K(|{\text {n}}| + m/2)$. Let ${\varphi _{\text {n}}}$ be either Hermite or Laguerre functions. Then the operator \[ \sum \limits _{\text {n}} {(f,{\varphi _{\text {n}}}){\varphi _{\text {n}}} \to \sum \limits _{\text {n}} {{a_{\text {n}}}(f,{\varphi _{\text {n}}}){\varphi _{\text {n}}}} } \] is bounded on ${L^p}\left ( {{\mathbb {R}^m}} \right )$ or ${L^p}(\mathbb {R}_ + ^m)$ respectively, $1 < p < \infty$.References
- J.-Ph. Anker, Aspects de la $p$-induction en analyse harmonique, Thèse de doctorat, Payot Lausanne, 1982.
- Jean-Philippe Anker, Applications de la $p$-induction en analyse harmonique, Comment. Math. Helv. 58 (1983), no. 4, 622–645 (French). MR 728457, DOI 10.1007/BF02564657
- Ronald R. Coifman and Guido Weiss, Operators associated with representations of amenable groups, singular integrals induced by ergodic flows, the rotation method and multipliers, Studia Math. 47 (1973), 285–303. MR 336233, DOI 10.4064/sm-47-3-285-303 —, Transference methods in analysis, CBMS Regional Conf. Ser. in Math., no. 31, Amer. Math. Soc., Providence, R.I., 1977.
- Jolanta Długosz, Almost everywhere convergence of some summability methods for Laguerre series, Studia Math. 82 (1985), no. 3, 199–209. MR 825478, DOI 10.4064/sm-82-3-199-209 —, ${L^p}$ multipliers for Laguerre expansions, Colloq. Math. (to appear).
- G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581
- Daryl Geller, Fourier analysis on the Heisenberg group, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 4, 1328–1331. MR 486312, DOI 10.1073/pnas.74.4.1328
- Carl Herz, The theory of $p$-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69–82. MR 272952, DOI 10.1090/S0002-9947-1971-0272952-0
- Carl Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91–123 (English, with French summary). MR 355482, DOI 10.5802/aif.473
- Andrzej Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), no. 3, 253–266. MR 782662, DOI 10.4064/sm-78-3-253-266
- Andrzej Hulanicki and Joe W. Jenkins, Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc. 278 (1983), no. 2, 703–715. MR 701519, DOI 10.1090/S0002-9947-1983-0701519-0
- Andrzej Hulanicki and Joe W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), no. 3, 235–244. MR 783992, DOI 10.4064/sm-80-3-235-244 A. Hulanicki and E. M. Stein, Marcinkiewicz multiplier theorem for stratified groups (manuscript).
- Giancarlo Mauceri, Zonal multipliers on the Heisenberg group, Pacific J. Math. 95 (1981), no. 1, 143–159. MR 631666, DOI 10.2140/pjm.1981.95.143
- Leonede De Michele and Giancarlo Mauceri, $L^{p}$ multipliers on the Heisenberg group, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 355–359. MR 545325
- M. A. Naĭmark, Normed rings, Reprinting of the revised English edition, Wolters-Noordhoff Publishing, Groningen, 1970. Translated from the first Russian edition by Leo F. Boron. MR 0355601
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory. , Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961
- Krzysztof Stempak, Multipliers for eigenfunction expansions of some Schrödinger operators, Proc. Amer. Math. Soc. 93 (1985), no. 3, 477–482. MR 774006, DOI 10.1090/S0002-9939-1985-0774006-9
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 919-924
- MSC: Primary 43A22; Secondary 22E30, 42C10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934868-1
- MathSciNet review: 934868