An unusual monotonicity theorem with applications
HTML articles powered by AMS MathViewer
- by J. Malý, D. Preiss and L. Zajíček
- Proc. Amer. Math. Soc. 102 (1988), 925-932
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934869-3
- PDF | Request permission
Abstract:
In the article an unusual monotonicity theorem is proved. It easily implies some usual monotonicity theorems which deal with preponderant and symmetrical derivatives. We also obtain some results concerning one-sided densities of arbitrary linear sets, which are closely related to an O’Malley theorem.References
- A. M. Bruckner, Some observations about Denjoy’s preponderant derivative, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 21(69) (1977), no. 1-2, 3–10. MR 470158, DOI 10.1016/0304-4149(85)90287-x A. Denjoy, Sur une propriete des fonctions derivees, Enseign. Math. 18 (1916), 320-328. V. Jarník, Sur la dérivabilité des fonctions continues, Publ. Faculté Sci. Univ. Charles 129 (1934).
- Lee Larson, Symmetric real analysis: a survey, Real Anal. Exchange 9 (1983/84), no. 1, 154–178. MR 742782, DOI 10.2307/44153525
- John L. Leonard, Some conditions implying the monotonicity of a real function, Rev. Roumaine Math. Pures Appl. 17 (1972), 757–780. MR 304574
- Richard J. O’Malley, A density property and applications, Trans. Amer. Math. Soc. 199 (1974), 75–87. MR 360955, DOI 10.1090/S0002-9947-1974-0360955-X
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 925-932
- MSC: Primary 26A48
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934869-3
- MathSciNet review: 934869