Spectral manifolds of bounded $S$-decomposable operators
HTML articles powered by AMS MathViewer
- by Kôtarô Tanahashi
- Proc. Amer. Math. Soc. 102 (1988), 939-944
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934871-1
- PDF | Request permission
Abstract:
We prove some properties of spectral manifolds of a bounded $S$-decomposable operator on a complex Banach space. Also, we prove a new characterization of $S$-decomposability.References
- I. Bacalu, $S$-decomposable operators in Banach spaces, Rev. Roumaine Math. Pures Appl. 20 (1975), no. 10, 1101–1107. MR 394281
- I. Erdélyi, Spectral resolvents, Operator theory and functional analysis (Papers, Summer Meeting, Amer. Math. Soc., Providence, R.I., 1978) Res. Notes in Math., vol. 38, Pitman, Boston, Mass.-London, 1979, pp. 51–70. MR 579021
- Ivan Erdélyi and Ridgley Lange, Spectral decompositions on Banach spaces, Lecture Notes in Mathematics, Vol. 623, Springer-Verlag, Berlin-New York, 1977. MR 0482359, DOI 10.1007/BFb0065476
- I. Erdélyi and Sheng Wang Wang, On strongly decomposable operators, Pacific J. Math. 110 (1984), no. 2, 287–296. MR 726488, DOI 10.2140/pjm.1984.110.287
- James K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61–69. MR 374985, DOI 10.2140/pjm.1975.58.61
- Kôtarô Tanahashi, Characterizations of $S$-decomposable operators on a complex Banach space, Tohoku Math. J. (2) 35 (1983), no. 2, 261–265. MR 699929, DOI 10.2748/tmj/1178229053
- B. Nagy, On $S$-decomposable operators, J. Operator Theory 2 (1979), no. 2, 277–286. MR 559609
- Mehdi Radjabalipour, On subnormal operators, Trans. Amer. Math. Soc. 211 (1975), 377–389. MR 377574, DOI 10.1090/S0002-9947-1975-0377574-2
- Sheng Wang Wang and Guang Yu Liu, On the duality theorem of bounded $S$-decomposable operators, J. Math. Anal. Appl. 99 (1984), no. 1, 150–163. MR 732709, DOI 10.1016/0022-247X(84)90240-3
- F.-H. Vasilescu, On the residual decomposability in dual spaces, Rev. Roumaine Math. Pures Appl. 16 (1971), 1573–1587. MR 306965
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 939-944
- MSC: Primary 47B40; Secondary 47A05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934871-1
- MathSciNet review: 934871