Notes on interpolation by the real method between $C(T,A_ 0)$ and $C(T,A_ 1)$
HTML articles powered by AMS MathViewer
- by Mieczysław Mastyło
- Proc. Amer. Math. Soc. 102 (1988), 945-948
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934872-3
- PDF | Request permission
Abstract:
Let $A$ be a Banach space and let $T$ be a compact Hausdorff space. We denote by $C(T,A)$ the Banach space of all $A$-valued continuous functions defined on $T$ endowed with the supremum norm. We show that if $T$ is infinite and $({A_0},{A_1})$ is a Banach couple with ${A_0}$ continuously embedded in ${A_1}$, then the interpolation space ${(C(T,{A_0}),C(T,{A_1}))_{\varphi ,p}}$ is equal to $C\left ( {T,{{\left ( {{A_0},{A_1}} \right )}_{\varphi ,p}}} \right )$ if and only if ${A_0}$ is closed in ${A_1}$.References
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- Jerry Bona and Ridgway Scott, Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces, Duke Math. J. 43 (1976), no. 1, 87–99. MR 393887 Ju. A. Brudnyĭ and N. Ja. Krugljak, Real interpolation functors, Soviet Math. Dokl. 23 (1981), 5-8.
- Fernando Cobos, Some spaces in which martingale difference sequences are unconditional, Bull. Polish Acad. Sci. Math. 34 (1986), no. 11-12, 695–703 (1987) (English, with Russian summary). MR 890615
- Michael Cwikel and Jaak Peetre, Abstract $K$ and $J$ spaces, J. Math. Pures Appl. (9) 60 (1981), no. 1, 1–49. MR 616007
- Jan Gustavsson, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978), no. 2, 289–305. MR 512275, DOI 10.7146/math.scand.a-11754
- Svante Janson, Per Nilsson, and Jaak Peetre, Notes on Wolff’s note on interpolation spaces, Proc. London Math. Soc. (3) 48 (1984), no. 2, 283–299. With an appendix by Misha Zafran. MR 729071, DOI 10.1112/plms/s3-48.2.283
- Mireille Levy, L’espace d’interpolation réel $(A_{0},\,A_{1}){}_{\theta ,\,p}$ contient $l^{p}$, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 14, A675–A677 (French, with English summary). MR 560331 L. Maligranda and M. Mastyło, Notes on non-interpolation spaces, J. Approximation Theory (to appear).
- Per Nilsson, Reiteration theorems for real interpolation and approximation spaces, Ann. Mat. Pura Appl. (4) 132 (1982), 291–330 (1983). MR 696048, DOI 10.1007/BF01760986
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 945-948
- MSC: Primary 46E40; Secondary 46M35
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934872-3
- MathSciNet review: 934872