The Bloch space and BMO analytic functions in the tube over the spherical cone
HTML articles powered by AMS MathViewer
- by David Békollé
- Proc. Amer. Math. Soc. 102 (1988), 949-956
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934873-5
- PDF | Request permission
Abstract:
We prove that the Bloch space coincides with the space BMOA in the tube over the spherical cone of ${{\mathbf {R}}^3}$; this extends a well-known one-dimensional result.References
- D. Békollé, Espaces de fonctions holomorphes dans des domaines de ${{\mathbf {C}}^n}$, Thèse d’Etat, Orléans, 1984.
—, Le dual de l’espace des fonctions holomorphes intégrables dans des domaines de Siegel, Ann. Inst. Fourier (Grenoble) 33 (1984), 125-154.
- David Békollé, Le dual de la classe de Bergman $A^{1}$ dans le transformé de Cayley de la boule unité de $\textbf {C}^{n}$, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 9, 377–380 (French, with English summary). MR 703901
- Sun-Yung A. Chang and Robert Fefferman, Some recent developments in Fourier analysis and $H^p$-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 1–43. MR 766959, DOI 10.1090/S0273-0979-1985-15291-7
- R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^{p}$, Representation theorems for Hardy spaces, Astérisque, vol. 77, Soc. Math. France, Paris, 1980, pp. 11–66. MR 604369
- R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 412721, DOI 10.2307/1970954
- S. G. Gindikin, Analysis in homogeneous domains, Uspehi Mat. Nauk 19 (1964), no. 4 (118), 3–92 (Russian). MR 0171941
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 949-956
- MSC: Primary 32M15; Secondary 46E15, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934873-5
- MathSciNet review: 934873