Pure state extensions of the trace on the Choi algebra
HTML articles powered by AMS MathViewer
- by Aldo Lazar, Sze-Kai Tsui and Stephen Wright
- Proc. Amer. Math. Soc. 102 (1988), 957-964
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934874-7
- PDF | Request permission
Abstract:
Pure state extensions of a nonhyperfinite ${\text {I}}{{\text {I}}_1}$-factor state on the Choi algebra to the Cuntz algebra ${O_2}$ is constructed.References
- R. J. Archbold and C. J. K. Batty, Extensions of factorial states of $C^\ast$-algebras, J. Funct. Anal. 63 (1985), no. 1, 86–100. MR 795518, DOI 10.1016/0022-1236(85)90099-0
- Man Duen Choi, A simple $C^{\ast }$-algebra generated by two finite-order unitaries, Canadian J. Math. 31 (1979), no. 4, 867–880. MR 540914, DOI 10.4153/CJM-1979-082-4
- Joachim Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173–185. MR 467330 J. Dixmier, Les algèbres d’opérateurs dans l’espace Hilbertien, Gauthier-Villars, Paris, 1969.
- David E. Evans, On $O_{n}$, Publ. Res. Inst. Math. Sci. 16 (1980), no. 3, 915–927. MR 602475, DOI 10.2977/prims/1195186936
- R. Longo, Solution of the factorial Stone-Weierstrass conjecture. An application of the theory of standard split $W^{\ast }$-inclusions, Invent. Math. 76 (1984), no. 1, 145–155. MR 739630, DOI 10.1007/BF01388497
- R. Longo, Solution of the factorial Stone-Weierstrass conjecture. An application of the theory of standard split $W^{\ast }$-inclusions, Invent. Math. 76 (1984), no. 1, 145–155. MR 739630, DOI 10.1007/BF01388497 S. Sakai, Talk given in Wabash International Conference on Banach Spaces in 1973, unpublished.
- Sze Kai Tsui, Central sequences associated with a state, Proc. Amer. Math. Soc. 82 (1981), no. 1, 76–80. MR 603605, DOI 10.1090/S0002-9939-1981-0603605-6
- S. L. Woronowicz, On the purification of factor states, Comm. Math. Phys. 28 (1972), 221–235. MR 310657
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 957-964
- MSC: Primary 46L30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934874-7
- MathSciNet review: 934874