A SHORT PROOF OF THE EQUIVALENCE
OF KMP AND RNP IN BANACH LATTICES AND PREDUALS
OF VON NEUMANN ALGEBRAS

V. CASELLES
(Communicated by William J. Davis)

ABSTRACT. In this note we give a unified approach to the equivalence between the Krein-Milman property and the Radon-Nikodym property in Banach lattices and preduals of von Neumann algebras.

It is by now well known that, for a Banach lattice, the Krein-Milman property (abbreviated KMP) and the Radon-Nikodym property (RNP) are equivalent [2]. The proof given in [2] combines techniques of [1] and [4]. On the other hand, as remarked in [3], KMP and RNP are also equivalent for preduals of von Neumann algebras. It is our purpose in this note to give a short proof of both results using the main result of [1] and an easy argument. We prove a more general result, in terms of ordered Banach spaces, enhancing both results above. Let E be an ordered Banach space [6] with a positive cone E_+. Then the bidual E'' of E is also an ordered Banach space whose positive cone will be denoted by E''_+. We identify E with the canonical image of E into E''. We say that E_+ is solid in E_+' if, for every $z \in E_+'$ and every $x \in E$ such that $z \leq x$, we have that $z \in E_+$. We can now state our theorem.

THEOREM. Let E be an ordered Banach space such that E_+ is solid in E_+'. Let C be a closed, bounded, convex subset of E_+ with the KMP. Then C has the RNP.

PROOF. If C does not have the RNP, there exists a closed, convex subset D of C such that D does not contain any extreme point of its w^*-closure \bar{D} in E''. Let $\text{ex}(D)$, $\text{ex}(\bar{D})$ denote the set of extreme points of D and \bar{D}, respectively. Let $z \in \text{ex}(D)$. Since $z \notin \text{ex}(\bar{D})$, there exists $a, b > 0$, $a + b = 1$, and $z_1, z_2 \in D$ such that $z = az_1 + bz_2$. If $z_1 \in E$, then $bz_2 \in E$. Since $b > 0$, $z_2 \in E$. Hence, $z_1, z_2 \in \bar{D} \cap E = D$ and $z \notin \text{ex}(D)$. This contradiction proves that $z_1 \notin E$. Similarly, $z_2 \notin E$. But $\bar{D} \subseteq E'_+$, $z_1 \leq a^{-1}z$, $z_2 \leq b^{-1}z$ together with our assumption imply that $z_1, z_2 \in E$. This contradiction shows that $\text{ex}(D) = \emptyset$ and C does not have the KMP.

A Banach lattice E with the KMP does not contain a copy of c_0. Hence E is weakly sequentially complete and E_+ is solid in E''_+ [5, II.5]. Taking $C := \{x \in E_+ : \|x\| \leq 1\}$, Theorem 1 proves that C is a Radon-Nikodym set. Therefore, positive linear operators from $L^1[0,1]$ into E are representable. Since every...
bounded, linear operator \(T : L^1[0,1] \to E \) is the difference of two positive operators [5, IV.1.5], we obtain

COROLLARY 1 [2]. If \(E \) is a Banach lattice with the KMP, then \(E \) has the RNP.

Let \(M_* \) be the predual of a von Neumann algebra \(M \). \(M_* \) is an ordered Banach space whose positive cone \((M_*)_+ \) (= the set of all normal, positive linear functionals on \(M \) [7, III.4] is solid in \((M')_+ \) [7, III.2.14]). If \(M_* \) has the KMP, by Theorem 1, \(C := \{ f \in (M_*)_+ : \|f\| \leq 1 \} \) has the RNP. Using a compactness argument and the fact that there exists a contractive projection \(P \) from \(M' \) onto \(M_* \) with \(P((M')_+) \subseteq (M_*)_+ \), one proves that all bounded, linear operators \(T : L^1[0,1] \to M \) with \(T \) (unit ball of \(L^1 \)) \subseteq \(C \), map the unit ball of \(L^1[0,1] \) into \(C \), hence are representable. Therefore, the real part of \(M \) (= the set of normal hermitian functionals) has the RNP. Since any functional \(f \in M_* \) can be written as \(f = f_1 + i f_2 \) where \(f_1 = 2^{-1}(f + f^*) \), \(f_2 = (2i)^{-1}(f - f^*) \), and \(f^*(x) := \overline{f(x)} \), \(x \in M \), it is a routine argument to show that \(M_* \) has the RNP. We have obtained

COROLLARY 2 [3]. In the predual of a von Neumán algebra the KMP and the RNP are equivalent.

ACKNOWLEDGMENT. I gratefully acknowledge a grant from the Ministerio de Educación y Ciencia de España. This paper was written when I was at the University of Tübingen during the academic year 1986–87. I would like to thank the AG Funktionalanalysis of this University and especially Professors H. H. Schaefer and R. Nagel for their hospitality. I am also indebted to Professor A. Marquina (University of Valencia) for his constant help and advice.

REFERENCES

FACULTAD DE MATEMÁTICAS, C/DR. MOLINER, 50. BURJASOT (VALENCIA), SPAIN