$4$-planar geodesic Kaehler immersions into a complex projective space
HTML articles powered by AMS MathViewer
- by Jin Suk Pak and Kunio Sakamoto
- Proc. Amer. Math. Soc. 102 (1988), 995-999
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934881-4
- PDF | Request permission
Abstract:
If $f$ is a proper $4$-planar geodesic Kaehler immersion of a connected complete Kaehler manifold ${M^n}(n \geq 2)$ into $C{P^m}(c)$, then ${M^n} = C{P^n}(c/4)$ and $f$ is equivalent to the 4th Veronese map.References
- Bang-Yen Chen and Paul Verheyen, Submanifolds with geodesic normal sections, Math. Ann. 269 (1984), no. 3, 417–429. MR 761311, DOI 10.1007/BF01450703 S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Interscience, New York, 1969.
- H. Nakagawa and K. Ogiue, Complex space forms immersed in complex space forms, Trans. Amer. Math. Soc. 219 (1976), 289–297. MR 407756, DOI 10.1090/S0002-9947-1976-0407756-3
- Hisao Nakagawa and Ryoichi Takagi, On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan 28 (1976), no. 4, 638–667. MR 417463, DOI 10.2969/jmsj/02840638
- Jin Suk Pak, Planar geodesic submanifolds in complex space forms, Kodai Math. J. 1 (1978), no. 2, 187–196. MR 508736
- Jin Suk Pak and Kunio Sakamoto, Submanifolds with proper $d$-planar geodesics immersed in complex projective spaces, Tohoku Math. J. (2) 38 (1986), no. 2, 297–311. MR 843814, DOI 10.2748/tmj/1178228495
- Kunio Sakamoto, Planar geodesic immersions, Tohoku Math. J. (2) 29 (1977), no. 1, 25–56. MR 470913, DOI 10.2748/tmj/1178240693
- Ryoichi Takagi and Masaru Takeuchi, Degree of symmetric Kählerian submanifolds of a complex projective space, Osaka Math. J. 14 (1977), no. 3, 501–518. MR 467632
- Masaru Takeuchi, Homogeneous Kähler submanifolds in complex projective spaces, Japan. J. Math. (N.S.) 4 (1978), no. 1, 171–219. MR 528871, DOI 10.4099/math1924.4.171
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 995-999
- MSC: Primary 53C42; Secondary 53C40
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934881-4
- MathSciNet review: 934881