Some stationary subsets of $\mathcal {P}(\lambda )$
HTML articles powered by AMS MathViewer
- by Hans-Dieter Donder, Peter Koepke and Jean-Pierre Levinski
- Proc. Amer. Math. Soc. 102 (1988), 1000-1004
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934882-6
- PDF | Request permission
Abstract:
Let $\kappa$ and $\lambda$ be uncountable cardinals such that $\kappa \leq \lambda$, and set $S(\kappa ,\lambda ) = \left \{ {X \in {\mathcal {P}_\kappa }(\lambda )|\;|X \cap \kappa | < |X|} \right \}$. We determine the consistency strength of the statement "$\left ( {\exists \lambda \geq \kappa } \right )$($(S(\kappa ,\lambda )$ is stationary in ${\mathcal {P}_\kappa }(\lambda )$)" using a new type of partition cardinals. In addition, we show that the property "$S(\kappa ,{\kappa ^ + })$ is stationary in ${\mathcal {P}_\kappa }({\kappa ^ + })$" is much stronger.References
- Stewart Baldwin, Generalizing the Mahlo hierarchy, with applications to the Mitchell models, Ann. Pure Appl. Logic 25 (1983), no. 2, 103–127. MR 725730, DOI 10.1016/0168-0072(83)90010-6 —, The consistency strength of certain stationary subsets of ${\mathcal {P}_\kappa }(\lambda )$, Proc. Amer. Math. Soc. 92 (1984), 90-92.
- C. A. Di Prisco and W. Marek, A filter on $[\lambda ]^{\kappa }$, Proc. Amer. Math. Soc. 90 (1984), no. 4, 591–598. MR 733412, DOI 10.1090/S0002-9939-1984-0733412-8
- A. J. Dodd, The core model, London Mathematical Society Lecture Note Series, vol. 61, Cambridge University Press, Cambridge-New York, 1982. MR 652253, DOI 10.1017/CBO9780511600586
- D. Donder, R. B. Jensen, and B. J. Koppelberg, Some applications of the core model, Set theory and model theory (Bonn, 1979) Lecture Notes in Math., vol. 872, Springer, Berlin-New York, 1981, pp. 55–97. MR 645907
- Hans-Dieter Donder and Peter Koepke, On the consistency strength of “accessible” Jónsson cardinals and of the weak Chang conjecture, Ann. Pure Appl. Logic 25 (1983), no. 3, 233–261. MR 730856, DOI 10.1016/0168-0072(83)90020-9
- Jean-Pierre Levinski, Instances of the conjecture of Chang, Israel J. Math. 48 (1984), no. 2-3, 225–243. MR 770703, DOI 10.1007/BF02761166
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 1000-1004
- MSC: Primary 03E55; Secondary 03E05, 03E35
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934882-6
- MathSciNet review: 934882