On quasiminimal e-degrees and total e-degrees
HTML articles powered by AMS MathViewer
- by Andrea Sorbi
- Proc. Amer. Math. Soc. 102 (1988), 1005-1008
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934883-8
- PDF | Request permission
Abstract:
We show that there exists a set $A$ such that the $e$-degree of $A$ is quasi-minimal and the $e$-degree of the complement of $A$ is total. This provides also a counterexample to a conjecture in [1].References
- John Case, Enumeration reducibility and partial degrees, Ann. Math. Logic 2 (1970/71), no. 4, 419–439. MR 282832, DOI 10.1016/0003-4843(71)90003-9
- S. B. Cooper, Partial degrees and the density problem. II. The enumeration degrees of the $\Sigma _{2}$ sets are dense, J. Symbolic Logic 49 (1984), no. 2, 503–513. MR 745377, DOI 10.2307/2274181
- Kevin McEvoy, Jumps of quasiminimal enumeration degrees, J. Symbolic Logic 50 (1985), no. 3, 839–848. MR 805690, DOI 10.2307/2274335
- Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0224462
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 1005-1008
- MSC: Primary 03D25; Secondary 03D30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934883-8
- MathSciNet review: 934883