A GENERALIZATION OF
THE POINCARÉ-BIRKHOFF THEOREM

H. E. WINKELNKEMPER

(Communicated by Doug W. Curtis)

ABSTRACT. We substitute Poincaré's twist hypothesis by the weakest possible topological one: that the homeomorphism in question not be conjugate to a translation.

Let \(A = S^1 \times [0,1] \) denote the annulus and \(B = \mathbb{R} \times [0,1] \) its universal cover; let \(T : B \rightarrow B \) be the translation \(T(x,y) = (x + 2\pi, y) \) for \((x,y) \in \mathbb{R} \times [0,1] \).

Let \(h : B \rightarrow B \) be a lifting of a homeomorphism \(\bar{h} : A \rightarrow A \) (i.e. \(hT = \bar{h}h \)). Recall that \(h \) is said to be topologically conjugate to \(T \), if there exists a homeomorphism \(k : B \rightarrow B \) such that \(hk = kT \), we write \(h \sim T \) if such a \(k \) exists, \(h \not\sim T \) otherwise.

The purpose of this note is to prove the

Theorem. Let \(\bar{h} : A \rightarrow A \) be boundary component and orientation preserving; if \(h : B \rightarrow B \) is a lifting of \(\bar{h} \) such that \(h \not\sim T \), then either \(h \) has at least one fixed point or there exists in \(A \) a closed, simple, noncontractible curve \(C \) such that \(\bar{h}(C) \cap C = \emptyset \).

In other words, in the Poincaré-Birkhoff Theorem we substitute Poincaré’s twist condition (i.e. that \(h \) send the boundary components of \(B \) in opposite directions) by the weakest possible condition \(h \not\sim T \).

Our proof is just a short addendum to Kerekjarto’s proof of the Poincaré-Birkhoff Theorem using Brouwer’s translation theory (see [5]).

The example in Figure 1 of [3] shows that, unlike in the area-preserving case, the existence of only one fixed point is best possible here.

For other generalizations and references see [3 and 4].

Proof of the Theorem. We first recall

Brouwer’s Lemma (see [2, Satz 8; 6, Satz 9]). Let \(H : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be an orientation-preserving, fixed-point free homeomorphism of the plane. Then, for any point \(P \in \mathbb{R}^2 \), the set \(\{H^n(P), n \text{ an integer} \} \) has no accumulation point in \(\mathbb{R}^2 \).

We call an arc \(\alpha \) joining the boundary components of \(B \) free (with respect to \(h \)) if \(\alpha \cap h(\alpha) = \emptyset \).

Lemma. If \(h \) has a free simple arc and \(h \not\sim T \), then \(h \) has a fixed point.
PROOF. Assume h has no fixed points and, without loss of generality, let h send both boundary components to the right.

For every $m \geq 0$ let B_m denote the component of $B - h^m(\alpha)$ lying on the right. We claim $\bigcap_{i=0}^{\infty} B_i = \emptyset$.

Suppose $P \in \bigcap_{i=0}^{\infty} B_i$ and let $m \geq 0$ be such that P lies in the left-hand side component of $B - T^m(\alpha)$; since $hT = Th$, $h^{-1}(T^m(\alpha))$ lies in that component also (see the figure). Since the sequence $h^{-n}(P)$, $n \geq 0$, lies entirely in the compact region of B bounded by α and $T^m(\alpha)$, we have found a contradiction to Brouwer’s Lemma.

Now it is easy to see directly that the orbit space B/h is Hausdorff and the natural projection a covering map i.e. B/h is homeomorphic to the cylinder $S^1 \times [0,1]$ (this is a special case of “Sperner’s criterion” (see [6, Satz 27] or [1, p. 73]).

Hence, if $k: B \to B$ is a lifting of a homeomorphism $\bar{k}: B/h \to S^1 \times [0,1]$ we have $hk = kT$ i.e. $h \sim T$, and the Lemma is proven.

To prove the Theorem simply observe that in his proof of the Poincaré-Birkhoff Theorem, Kérèkjhátó constructs a simple, topological halfline L, such that $L \subset h(L) = \emptyset$, starting from one boundary component ∂^+ of B, and uses Poincaré’s twist condition only to conclude that L cannot cross the other boundary component ∂^-; see p. 101 of [5]. (This fact then allows the construction of the closed curve C.)

However, if the line L does intersect the boundary component ∂^-, then we have obtained a free arc α for h and the existence of the fixed point follows from our Lemma.

A conjecture. Unlike Poincaré’s twist condition, the condition $h \not\sim T$ still makes sense when one or both boundary components of the annulus A shrink to a point, leading us to venture a conjecture.

Let S^2 denote the two-dimensional sphere and let $\bar{h}: S^2 \to S^2$ be an orientation and area-preserving homeomorphism with two distinct stable fixed points N and S; consider the plane R^2 as the universal cover of $S^2 - N \cup S$.

CONJECTURE. If $h: R^2 \to R^2$ is a lifting of \bar{h} and $h \not\sim T$, then h has a fixed point.

REFERENCES

Department of Mathematics, University of Maryland, College Park, Maryland 20742